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Part 1 
Generalization of Maxwell's electrodynamics 

in moving media 
 
RESUME. Generalization of Maxwell's electrodynamics in moving media is 

suggested, which, first, does not resort to the Einstein special relativity theory; sec-
ond ,bases its calculations and experiments  on Newton's space; third ,naturally in-
corporates superlight velocities and indicates the requirements for the latter to be 
discovered, and fourth ,describes the classical experiments of Bradley, Michelson, 
Fizeau, and Doppler in a unified manner. 

 
Introduction  

 
We shall show the possibility of DYNAMIC description of a change of the in-

ertial factors for an electromagnetic field within the framework of the NEWTONIAN 
space - time, in a single coordinate system, when the frame of reference is considered 
as a physical environment capable of influencing the parameters of the field. 

 
1.1. Maxwell's dynamic equations in the Newtonian space-time 
 
We will start with the concept of a single observer who has the standard of 

length and time according to Newton's space-time model 13 TR × . The physical laws 
of Maxwell's electrodynamics in 13 TR ×  can be determined in terms of the three-
dimensional operators ×∇  and ⋅∇  and they have a vector form: 
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Maxwell’s equations acquire the tensor form: 
0][ =∂ mnk F , iik

k SH =∂ , 
where k∂  is the covector of partial derivatives, for example over the coordinates 

xx =1 , yx =2 , zx =3 , ictx =0 . 
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Physically speaking, these sets of equations are equivalent; however, it is more con-
venient to carry out the mathematical analysis of general problems in the tensor 
form. 
Starting from these equation, and not resorting to the concept of an ether, we will de-
scribe in a unified manner the experiments of Bradley [1], Fizeau [2], Michelson [3], 
and Doppler [4], the "constancy" of the speed of light in vacuum [5], following the 
model of dynamic change of field parameters in the NEWTONIAN space-time. 
 
 

1.2. Generalized connections between fields and inductions  
                    in Maxwell's electrodynamics 
 

For an isotropic medium at rest the connection between fields and inductions 
has the form: ED

rr
ε= , HB

rr
μ= , where ε  and μ  are the dielectric and magnetic 

permeability’s.  
In the version considered by Minkowski [6], the medium is a secondary radiation 
source, so the medium velocity mU

r
 is identical with this velocity of the radiation 

source: 
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We will seek connections between the fields mnF  and inductions ikH  [7] in the form: 
 

mn
knimik FH ΩΩ= . 

Let imΩ  be equal to 
( )miimim UUβα +Θ=Ω , 

where α and β  are scalar functions, ),1,1,1( χdiagim =Θ  is the metric tensor in 
13 TR × , and imΘ= detχ , Θ= ddxU ii /  represents the four-velocities, without in-

voking SRT. 
Here we have ji

ij dxdxd Θ=Θ2 , and the inverse tensor can be specified in two ways: 

a) k
i

jk
ij δ=ΘΘ , b) kl

jlikij bb Θ=Θ , where ijb  are additional tensors. 

In such a statement the expression for imΩ  has been found 8] by solving a system of 
nonlinear algebraic equations following from the generalized formal connection for 
fields and inductions, when the connections are considered for the velocity equal to 
zero. Then 
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The tensor imΩ  has no singularity at 0=χ . Really, 
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For the velocities k
nkn UU Θ=  we have 1=k

kUU .In view of the antisymmetry of 

mnF  and ikH , we have  
 

mn
ikmnik FH Ω= , ( )kminknimikmn ΩΩ−ΩΩ=Ω 5,0  

with the conditions  
kimniknmikmn Ω−=Ω−=Ω . 

Maxwell's generalized equations take the vector form [9]: 
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1.3. Main model problem 

 
Let a radiation source move around the Earth in vacuum with instantaneous 

velocity fsU
r

, which is the velocity of the primary radiation source fsUU
rr

==0ρ .Let 

the radiation spread from empty space into the atmosphere of Earth's ,which has den-
sity ρ , in which for 0ρρ =  the velocity of the secondary radiation source is equal to 
the velocity of the physical medium mU : 

mUU
rr

== 0ρρ . 
 

Let us introduce the velocity ( ))(,, ρwUUUU mfs

rrrr
=  assuming that it also depends on 

the functional )(ρw , which is named the phase of the inertia of the electromagnetic 
field. We will assume that in agreement with the indicated physical formulation [7], 
the velocity U

r
is governed by the relaxation equation 

( )mUUP
d
Ud rr
r

−−= 0ξ
, fsUU

rr
==0ξ . 

 Here 0P  is the relaxation constant, 
0ρ
ρξ = . The solution of the relaxation equation is 

mfs UwUwU
rrr

+−= )1( ,  ⎟⎟
⎠
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⎜⎜
⎝

⎛
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0
0exp1
ρ
ρPw . 

We have the conditions 
 

fsUU
rr

== 00ρ ,  00==ρw ,  mUU
rr

== 0ρρ ,  1
0
==ρρw . 

 

We require that w=χ . The solution of the indicated problem is then in general pos-
sible. 
 

1.4. Solution of Maxwell's generalized equations with constw =  
 
When constw = ,the equations for the field potentials mA  in their four-

dimensional form are [10]: 
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with the calibration condition: 
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For vector A
r

 and scalar ϕ  potentials, according to their definitions 
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and the calibration condition 
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The Green function for the vector equations is indicated in [7]: 
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It is given in a cylindrical coordinate system, the position vector for which has 

length ( ) 2
122 zR += ρ , and the values are equal to 
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When 0=β , we have the Green function for the medium at rest without dispersion: 
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⎝

⎛
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t
R
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The Green function differs from zero on the surface: 
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This is an ellipsoid of rotation whose symmetry axis coincides with U
r

, and the posi-
tion of the center is given by  

220 w
wUtz

βεμ
εμ
−
−

= . 

 
The center of ellipsoid moves with the velocity 
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220 w
wUU

βεμ
εμ
−
−

= . 

The semi axes of an ellipsoid are equal to 
 

2
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−
−

=
w

wcta
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The dispersion equation for the electromagnetic field has standard form [11]: 
 

( )( )22222 UKwwKc
rr

⋅−−Γ+= ωεμω , ( ) 122 1 −−=Γ βw , 
where K

r
 is the wave vector.  This yields the expression for the group velocity: 
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In a nonrelativistic limit  
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K
K

n
cV
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r

r
+−⎟
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⎞

⎜
⎝
⎛ −+= 11

2
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1.5. Analysis of the expressions obtained 
 

1. At 0=w  we have 

fsg U
K
KcV

r
r

r
+= . 

 
Thus, in the generalized model of electromagnetic events the field moves such that 
the center of the surface on which the Green function is nonzero moves with the ve-
locity fsU

r
, and the semi axes of the ellipse in this case are equal, giving a sphere.. 

This picture corresponds to an intuitive comprehension of the fact, according [12], in 
the absence of external influences, the field in vacuum retains its inertia. 
2. The generalized electrodynamics of Maxwell's one is consistent with the experi-
ments of Michelson [3]. According to the conditions of his experiment, the velocity 
of the medium was equal to zero, 0=mU

r
, just as the velocity of the radiation source. 

For this reason we have the radiation velocity to be independent of the direction: 

K
K

n
cVg

r
r
= . 

 
3. The generalized electrodynamics of Maxwell is consistent with the experiment of 
Fizeau [2]. According to the experimental conditions 0=fsU

r
 and 1=w , therefore 

the velocity is equal to 

mg U
nK

K
n
cV

r
r

r
⎟
⎠
⎞

⎜
⎝
⎛ −+=

2

11 . 
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Conclusions 

 
The generalization of Maxwell's electrodynamics, which allows one to de-

scribe in a unified manner a vast quantity of experimental data without resorting to 
the special relativity theory, is possible if the connections between the fields and in-
ductions is taken into account. 
The functional ( )ρw  and also the velocity that specifies the external inertia of the 
field ( ) mfs UwUwU

rrr
+−= 1  change in this case dynamically, which are the determin-

ing factors for the velocity gV
r

 and the frequency ω  of the electromagnetic field. 
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PART 2 
Dynamic mechanism of the external velocity transforma-
tions into a proper frequency of an electromagnetic field 

 
RESUME. The earlier unknown dynamic mechanism of the transformation of 

the velocity that specifies the external  inertia of a field, into a proper frequency of 
an electromagnetic field is found. It is shown that a particle of nonzero rest mass can 
be limited at the particle velocity equal the light speed in vacuum. 
 

Introduction 
 

 Part 1 of this article suggests a generalization of Maxwell's electrodynam-
ics in which the dynamic equations are used without involving any new elements, 
while the connections between fields and inductions are extended. The generalized 
connections contain the velocity of a primary radiation source fsU

r
, the medium ve-

locity mU
r

, and also new quantity, namely, the external inertia phase of the electro-

magnetic field ⎟
⎠
⎞

⎜
⎝
⎛−−=

0
0exp1)( ρ
ρρ Pw , where ρ  - is the atmosphere density.

 The calculation of the field parameters and analysis of experimental data are car-
ried out in Newton's space model. The absolute character of length and time are the 
foundation of the proposed algorithm for a dynamic change in the inertial parameters 
of the field. 

 The equations for field potentials, following from Maxwell's generalized 
equations, are obtained. The Green's function is found and its physical consequences 
are analyzed. A generalized expression for the field group velocity is obtained. The 
dependence of the field velocity in vacuum on the primary radiation source velocity 
is shown. 
 Now, we will study a dynamics of the field frequency. 
 

2.1. New requirement on a wave phase 
 

 The group velocity of an electromagnetic field for 1→w  does not depend 
on fsU

r
. Physically this change of the speed can and must be exhibited as a change in 

frequency. Since a dynamic change in the speed is considered, consequently, there 
will also be dynamic change in the frequency ω . To understand, the manner in 
which this occurs, we supplement the dispersion equation with the generalized phase 
requirement [1]: 
 

const

c
U

w

UK
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⋅−

2
1

2

2

1 ξ
ξ

ξω
rr

. 

 
This requirement does not follow directly from Maxwell's equations and, conse-
quently, we will assume that the velocity ξU

r
 can be different from the radiation car-
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rier velocity U
r

. By analogy with the already adopted algorithm and the model of the 
analysis, we will consider the new velocity ξU

r
 in the following form: 

( )( ) UwUUU mfs

rrrr
≠ρξξ ,, , 

 
assigning for it the equation of the relaxation type [2]: 
 

( )*UUP
d
Ud rr
r

−−= ξξ
ξ

ξ
, fsUU

rr
==0ξξ . 

In order to preserve fsU
r

 as a function on of ξU
r

, we use as the relaxation value 

mfs UUU
rrr

+=* , 
which is permissible in Newton's model.We have the solution 

mfs UwUU
rrr

ξξ += , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

0

exp1
ρ
ρ

ξξ Pw . 

The situation appears thus: from the kinematic point of view, because of the interac-
tion with the medium, the velocity fsU

r
, disappears and it is not exhibited in the 

group velocity; from the energy point of view, it is transformed into the frequency 
ω . This can be achieved because the role and functions of the dispersion and phase 
requirements, are complementary. 
 

2.2. Dynamics of the Doppler effect and aberrations in Maxwell's 
                 electrodynamics 
 

We will adopt the point of view that the change of the parameters of an elec-
tromagnetic field happens only because of its interaction with the medium or with 
outer fields. Let us consider how these processes occur in the generalized electro-
magnetic model. Let us analyze the model problem: 

The radiation with an initial frequency 0ω  and wave vector 0K
r

 from a radia-

tion source moving in vacuum with the velocity fsU
r

 is spread to the Earth surface, 
on which there is an observer. 

The atmosphere is at rest, 0=mU
r

. It is required to calculate the manner in 

which the frequency ω  and wave vector K
r

 change because of the interaction of ra-
diation with the medium. Let ξww = .Using the equations obtained, we will unite in a 
uniform system the dispersion and phase requirements [3]: 

( )( )22222 UKwwKc
rr

⋅−−Γ=− ωεμω , 
 

( ) ξξωω UKcwU
rr

⋅+−= 2
1

22
0 1 , 

 

( ) 1222 1 −−=Γ cwU . 
 

We assume that 0
0
=yK , 

0zz KK = .We find the dependence of ω , xK  on the initial 

values of 0ω , 
0zK .We transform, accurate to ( )2cU fs , the dispersion equation to the 

form 
02 =++ PBKAK xx . 

The coefficients are  
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2

2

1
c

U
aA fs−= ,  32 wwwa −+= εμ , 

b
c

U
c

w
wB fs0= , wb −+= εμ1 , 

q
c

U
c
w

P fs
2

2

2

2
0= , εμεμ 32432 22 wwwwwq −++−= .  

 
 

We calculate a ,b , q  for 1=εμ .Analysis has shown that the solution can be ex-
pressed by the function 
 

( ) ( )[ ]2
1

12 www −+−=Φ . 
 

We have for xK  a nonlinear dependence on w 

c
U

c
K fs

x
0ω

Φ= . 

The aberration angle is defined by the expression 

Φ==
c

U
K
K fs

z

xαtan . 

The connection of initial and intermediate frequencies is given by dependence 
 

⎥
⎥
⎥
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⎤

⎢
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⎡
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⎟
⎠
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⎜
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⎛
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2

0 1
c

U
c

U
w fsfsωω . 

 
According to the calculations, far from the Earth surface we have 

0=xK , 
c

K z
0ω

−= , 0ωω = . 

As the Earth is approached, ω  and Kx vary continuously because of the change in w . 
For 1=w  we obtain 

c
U

c
K fs

x
0ω

= , 
2

1

2

2

0 1
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

c
U fsωω . 

These values agree with Bradly's experiment and with the formula for the Doppler 
cross effect. The same results are obtained by the methods of the special relativity 
theory. 
 The special relativity theory, as is typical of a kinematic theory, connects initial and 
final parameters of the field. It is possible to consider the special theory of relativity 
as corresponding to «black box», given the input parameters, the values at the output 
of the box are prescribed, but the process itself is not analyzed. The generalized 
model indicates the laws of the dynamics of the processes. We have 
 

,
2
1

0 B
fs

c
U

w ωωω ⎟
⎠
⎞

⎜
⎝
⎛ −Φ+=   

 

( ) fsg Uw
n
w

K
K

n
cV

r
r

r
−⎟

⎠
⎞

⎜
⎝
⎛ −+≡ 11

2
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where 
c

U fs
B 0ωω = . 

 
 
 
 

2.3. New effects in the generalized Maxwell's electrodynamics 
 

2.3.1. Unlimited velocities of an electromagnetic field in vacuum.  
 

In vacuum we have 0=ρ  and, consequently, 0=w . The field group velocity 

fsg U
K
KcV

r
r

r
+=  

depends on the velocity of the initial radiation source. The wave front surface repre-
sents a sphere, because tcba 0==  and its centre moves with the velocity 

fsUU
rr

=* . 
This is the pattern in which the radiation propagates in the new model. It corresponds 
to the idea suggested by Ritz [4]. Because of the interaction with the medium, in par-
ticular with the frame of reference, the velocity fsU

r
 can vanish. Precisely this hap-

pens in all of the schemes for direct measurement of the speed of light in vacuum [5]. 
Therefore it is possible to consider that the generalized model of electromagnetic 
phenomena agrees with the "constancy" of light speed in vacuum, demonstrating that 
for finding the dependence, only indirect experiments are suitable, when measure-
ment without the influence on the quantity fsU

r
, is possible. 

 If the radiation moves in a gravitational field, its influence on the inertia of the radia-
tion carrier is possible. This note can turn out to be important for the analysis of ra-
diation transfer in outer space. 
 

 2.3.2. Superlight velocities in a moving rarefied gas. 
 
Let the radiation source be at rest with respect to the observer 0=fsU

r
, and 

the medium - gas stream moves with the velocity mU
r

. Then the group velocity of the 
field is 

mg Uw
n
w

K
K

n
cV

r
r

r
⎟
⎠
⎞

⎜
⎝
⎛ −+= 21 . 

 

For index of refraction close to unity, the value 5,0=w  will maximize the correction 
term. The velocity will then be 
 

mg U
K
KcV

r
r

r

4
1

0
max +=   

 
In the special relativity theory we have different results. The group field velocity de-
pends on the Fresnel classical coefficient according the formula 

mg U
nK

K
n
cV

r
r

r
⎟
⎠
⎞

⎜
⎝
⎛ −+= 2

11 . 
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Since λQn += 1 , where 410−≅λQ , we have 

K
KcVg

r
r

0≅ . 
 
 The discrepancy between the predictions of the generalized electromagnetic model 
and of the algorithm based on the relativistic kinematics is clearly expressed. The re-
quirements indicated correspond to Fizeau experiment, if a moving rarefied gas is 
used in an experimental setup. According to the dynamical model of the electromag-
netic field inertia, we can change the moving gas density so that bands in a Fizeau in-
terferometer will begin to move. Such an experiment can be carried out any time. 
 

 2.3.3. The possibility to move with light velocity in vacuum for physical objects 
 

At w = 1, the analysis of the dynamics of the transverse Doppler effect for the 
case of small relative velocities gives  

2
1

2

2

0

1 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

c
U fs

ω
ω . 

 

Let us multiply this expression be the quantity 2ch , where h  is the Plank constant. 
Then we will obtain the dependence for masses which is used in the relativistic dy-
namics: 

2
1

2

0

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

c
U

m
m

fs

. 

It will be shown below that the generalized theory of electromagnetic phenomena 
gives another frequency formula when the velocities approach light speed in vacuum. 
Maintaining the relationship between frequency and mass valid, we will offer a new 
dependence of the mass on the velocity. For this purpose we maintain the above 
model of the radiation propagation from empty space in to the Earth's atmosphere, 
assuming that the velocity fsU

r
 tends to the light velocity in vacuum. The problem 

can be easily solved entirely, but it is sufficient for our purposes to be restricted to a 
version when the value 1=w  is reached. Then 0=U

r
, 0ωncK z = . Since cU fs /  is 

close to unity, the index of refraction corresponding to the actual situation is to be 
taken. Let Qn += 1 , where 1<<Q . 
 With allowance for the above remark, we obtain the following system of equations 

( )2
0

2222 ωω −= nKc x , ( ) 2
12

0
2

2
1

2

2
0 1 ωωωω −+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= fs

fs U
c
n

c
U

. 

The quadratic equation for the frequency 

0112
2

2
2
0

2
1

2

2

0
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

c
U

c
U fsfs σωσωωω , 

22 QQ +=Ψ , 
Qn += 1  

now contains the factor 
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( )[ ] 122 11 −
Ψ+−= cU fsσ ,   22 QQ +=Ψ . 

 
The value of the field limited frequency is given by the law [3] 
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It has no singularity for cU fs → . We obtain 

2
1

0
* 11lim ⎟

⎠
⎞

⎜
⎝
⎛

Ψ
+==

→
ωωω

cfsU . 

 
Assuming that the mass is proportional to the frequency, we have the new formula 
 

( )

( )Ψ+−

Ψ+Ψ−⎟
⎠
⎞

⎜
⎝
⎛ −

=
11

11

2

2

2
1

2
1

2

22
1

2

2

0

c
U

c
U

c
U

mm . 

 
The value of Ψ  should be found from experiment. 
 

 2.3.4. The mechanical law of energy conservation for a photon. 
 

 When radiation propagates in a rarefied gas from a primary source, mov-
ing in vacuum with the velocity fsU

r
, a dynamical change in its group velocity gV

r
 

and frequency ω  occurs. At small relative velocities the frequency at the final stage 
of the dynamical process changes by the value 
 

2

2

00 5,0
c

U fsωωω =− . 
 
Let us multiply this expression by the Plank constant h  and use the Einstein formula 
for the photon inertia mass: 

2
0

c
min

ω
h= . 

This will yield the relation 
kinEU =Δ , 

 
where the following designations are introduced: 
a) the kinetic energy of the photon, which depends on the primary radiation source 
velocity 

2
2
05,0 fskin U

c
E

ω
h= ; 

 
b) the potential energy of the photon, which depends on the frequency differences 
 

( )0ωω −=Δ hU . 
 
The situation appears thus: the photon had the velocity fsU

r
, additional to the light 
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speed in vacuum 0c , and the frequency 0ω ; in its interaction with the medium the 

velocity fsU
r

 was "transformed" to the frequency ω .  
 Therefore the photon is similar to a physical body with its tangential ||L  and trans-
verse *L  lengths in the Newtonian space-time and it has an interior motion. 
 Let λaL =* , and λbL =|| , where a and b are constants. 
 Then the change of the frequency gives some changes in the L* and L|| . 
 
 

          Conclusions 
 

1. The generalization of Maxwell's electrodynamics, which takes into account all the 
forms of inertial motion, is possible, which, first, does not use the special relativity 
theory; second, it is based on the Newton space; third, gives superlight velocities and 
indicates the conditions under which they can be discovered; fourth, describes the 
known experimental facts, additionally assigning the dynamics of the external inertia 
parameters for the electromagnetic field. 

2. The Bradly, Michelson, Fizo, and Doppler effects have a dynamic nature. 
3. The special relativity theory correctly relates initial and final magnitudes of dynami-

cal processes, fulfilling the function of a peculiar kind of a black box. 
4. There is a dynamic mechanism of the transformation of the primary radiation source 

velocity into the electromagnetic field frequency because of its interaction with the 
medium, when the "mechanical" law of energy conservation is fulfilled. 

5. The light speed in a moving rarefied gas can exceed the light speed in vacuum. 
6. The velocity of an electromagnetic field in vacuum is not restricted to a limiting 

value, but for it to be measured it is necessary to take into account the interaction be-
tween the experimental devices and the field or those conditions, in which the field is 
spread. 

7. The motion of particles for 00 ≠m  with the light speed in vacuum is possible. 
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Part 3 
Maxwell's electrodynamics 

without the velocity restriction in spinor form 
 

 RESUME. It is shown, that Maxwell's electrodynamics without the velocity re-
striction has the spinor form for the matrix group V(4), which is 

( ) ( )( ) ( ) ( )( )2121 SUUSUU ×⊗× . In this model, Newton's space-time is used with the 
Minkowski's space-time and with the Euclid's superlight space-time, which follow 
from the dynamic equations and the connections between the fields and inductions. 
 
 

Introduction 
 

It is known that Maxwell's electrodynamics in vacuum has the spinor form [1-
4]. The present work shows this form for the electrodynamics of the moving media. 
It shows that the electrodynamics model without SRT consists of the Newton's 
space-time as the base of the fibre bundle manifold, with 
( ) ( ) ( )( ) ( ) ( )( )21214 SUUSUUV ×⊗×=  as the fibre, and the Minkowski's space-time 

is used additionally to Euclid's super-light space-time. 
 

3.1. Maxwell's electrodynamics in spinor form 
 

Let us introduce 
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We will use 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

0001
0010
0100
1000

1a ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

−

=

0010
0001
1000

0100

2a ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

0100
1000

0001
0010

3a ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0100
0010
0001

4a , 



 18

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

0001
0010
0100
1000

1b ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

=

0010
0001
1000
0100

2b ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

0100
1000
0001
0010

3b ,

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0100
0010
0001

4b , 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Π

0000
0000
0000
0001

1 ,  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Π

0000
0000
0010
0000

2 ,  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Π

0000
0100
0000
0000

3 ,  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Π

1000
0000
0000
0000

4 . 

 

Then for mnF  and mnH  in the form 
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The dynamic equations in spinor form can now be derived. The equations  
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We have analytically 
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Let us introduce ( ) πρρρρ 42,2,2,2 iUUUcolumn zyx −=Φ . 
Then the equations 
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Let us write in spinor form the connections between the fields and inductions, pro-
posed earlier: 
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If we introduce 
 

( )1,1,1,1 −= wdiagGkn ,     ( )1,1,1,1 −−= wdiagRkn ,     QaQa kk 1~ −= ,     

n
knk g Π=Π , 

 

( )wdiagQ ,1,1,11 =− ,     QbQb kk 1
~

−= ,     k
k aa = ,     k

k bb = ,     k
knk UgU = , 

we can write 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ Ψ+Ψ=−

*
***

~~ nknk
knk

k
k

k UbUaGwUaUbi ϕϕμ  

and 
( ) ( )ϕϕε nknk

knk
k

k
k UbUaRwUaUbi ~~ **** +=Ψ−Ψ . 

 
 
 

3.2. Analytic spinor form of the Maxwell's equations  
 

If we use 1=w , we obtained the standard Maxwell's electrodynamics, deduced 
by Minkowski. Using our notations and  

 
 

( )0,1,1,1diagnij = ,    ( )1,1,1,1diagEij = ,    *Ψ=Ψ ,    *ϕϕ =  
 
 
we can write 
 

( ) ( ) 0=Ψ∂+Ψ∂ ij
ij

ij
ij nEbrnEag βα

αβ
βα

αβ , 
 
 

( ) ( ) Φ=∂+∂ ϕϕ βα
αβ

βα
αβ ij

ij
ij

ij nEbgnEar , 
 
 

( ) Ψ+Ψ=− ij
ij

ij
ij

ij
ij

ij
ij nEUbrnEUagnEUagnEUbri βα

αβ
βα

αβ
βα

αβ
βα

αβ ϕϕμ , 
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( ) ϕϕε βα
αβ

βα
αβ

βα
αβ

βα
αβ

ij
ij

ij
ij

ij
ij

ij
ij nEUbgnEUarnEUarnEUbgi +==Ψ−Ψ , 

 

( )ΨΠ−ΨΠ= δγδγ
βδαγαβ baggiF

2
, 

 

( )ϕϕ δγδγ
βδαγαβ Π−Π

−
= baggiH

2
. 

 

Here we have not only the Newton's space with ijn . The equations have the Min-
kowski's space with ijg  and the Euclid's space with ijr . 
 
 

3.3. Fundamental group for the physics 
 

We will use the Pauli group ( ) ( ) ( )212 SUUV ×= , where  
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The elements ( )Eaaa ,,, 321 , ( )Ebbb ,,, 321  form the sub algebras with the condi-
tions [ ]jikij

k
ijji c ξξξξξξξ ,==− . The elements ( )Eccc ,,, 321 , ( )Eeee ,,, 321 , 

( )Efff ,,, 321  are the sub algebras with the conditions 
{ }jikij

k
ijji c ξξξξξξξ ,==+ . Let us introduce 1−=σ  for the elements E, ia , ib  

and 1=σ  for the elements ic , ie , if . For any elements from ( )4V  we have the 
conditions 

( ) ( ) ( )
kij

k
ij

kji
ji c ξξξσσσξξ =+ , 

( ) ( ) ( ) ( )
lijk

l
ijk

lkji
kji c ξξξξσσσσξξξ =+ , 

( ) ( ) ( ) ( ) ( )
mijkl

m
ijkl

mlkji
lkji c ξξξξξσσσσσξξξξ =+ , . . .   . 

 
which determinate a new algebra. The designation (i) means the absence of the sum-
mation on the coinciding indexes. We understand now, that Maxwell's electrodynam-
ics without SRT has the Newton's space-time as the base of the fibre bundle manifold 
and ( )4V  as the fibre [6]. We can give a simple "picture" of the group ( )4V . Really, 
the elements of the subgroups have its own places, according figure1: 
 
 
 
 
 

 
 
 
 
Fig.1. The picture of the group V (4). 
 
 
 
 
 

E 
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Conclusions 
 
We have shown, that Maxwell's electrodynamics without the velocity restriction has 
a simple spinor form for the group ( )4V . We see, that in this form, the Minkowski's 
space-time and the Euclid's space-time are used additionally to the Newton's space-
time. 
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Part 4 
Physical mechanism of the dynamical transformation 

of the field inertia for Maxwell's electrodynamics 
without the velocity restriction 

 
RESUME. This work suggests a physical mechanism of the dynamical trans-

formation of the field inertia for Maxwell's electrodynamics without the velocity re-
striction. It is found, that two scalar cohomological groups govern the field inertia. 

 
 
Introduction 

 
Part 1 and Part 2 of this series suggests a new model of the field inertia, com-

prising two different parts: proper inertia, which depends on the index of the refrac-
tion ( )ρn , and external inertia, which depends on the new magnitude ( )ρw , named 
the «phase inertia». In this model, the velocity and the frequency of the field dy-
namically depend on ( )ρn  and ( )ρw . Earlier, only simple solutions for the proposed 
model were derived. Now some new exact solutions, based on a generalized Green's 
function, will be derived. We will study the physical mechanism of the change of the 
proper and external field inertia. 
 

4.1. Generalized Green's function 
 

Following from the new model, we have the Green's function for the vector 
equation  

( ) 0
1

1 2

222
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2
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in the form [1] 
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⎛
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−+= − 2
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0 )1(

1)(16),( ξ
εμβ

βεμδξμπ r
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trtrG r . 

 

Here ( ) mfs uwuwu rrr
+−= 1 , mur  is the matter velocity, fsur  is the first source velocity, 

c
urr

=β , ,
22

tu
w

wz
βεμ

εμξ
−
−

−=     .)1(
22

2
22

w
wr
βεμ
βεμρ

−
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=  

 
In a cylindrical coordinate system, the position vector has length  
 

( )2
1

22 zR += ρ . 
 
We will analyze some exact solutions transforming the Green's function. In accor-
dance with standard method [2], we have the relation for the δ -function 

∑ ′
−

=
s s

s

tf
tt

tf
)(
)(

))((
δ

δ , 

where 
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We will introduce 
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( ) μεβ
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The derivates ( )stf '  are equal. So we have  
 

( ) ( ) ( )( ) 2
1

222
21 1'' zabzatftf −+== . 

With the function 
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a
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we have 

( ) ( ) ( ) ( ) ( )( )
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22114
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We can analyze now some particular situations for different phase veloci-

ties s
k

v f
rr ω

= , where ω  is the frequency, k
r

 is the wave vector. 

1. For εμcv f < , we have 
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2. For εμcv f = , we have 
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and  

( ) ( )1
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16, tt

z
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3. For εμcv f > , we have 
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Two roots 1t  and 2t  are positive. The surface of the wave front is a cone with the an-
gle 
 

2
1

2

2

1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=Θ

βμε
βwtg g , 



 26

 

which has nonlinear dependence on w . 
 
 
 

4.2. Geometrical optics approximation 
 
Consider the situation in which the phase inertia w  changes slowly. For small veloci-
ties, when 12 <<β , we have 

][ EGHB
rrrr

×+= μ ,     ][ HGED
rrrr

×−= ε , 
where .)( βμε

rr
wG −−=  

 
The light ray is describing by the dispersion equation [3] 
 

22)( nGk =−
rr

, 
where ψ∇=k

r
. The Hamiltonian is 

( )[ ]2
2

5.0 nGKH −−=
rr

. 
 
From the Hamilton-Jacoby equations we see, that the vector dsrd /r  depends on 
k
r

and G
r

. G
r

 is nonlinear function of ( )ρw .  
 

4.3. Cohomological mechanism of the field inertia 
 
We will determine the proper field inertia for the case when 0== fsm uu rr . Then the 
group velocity is 

k
k

n
cvg

r
r

=  
 

and the rate of the refraction n  governs the field inertia. We will determine the ex-
ternal field inertia for the case when 0≠mur , 0≠fsur . Then the group velocity has 
the form 
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n
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We will discuss the physical and mathematical meanings of the magnitudes n  and 
w , using the general form of the connection between fields and inductions. Max-
well's generalized equations are 0][ =∂ mnk F , iik

k SH =∂ , mn
knimik FH ΩΩ=  with 
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If the velocity is 0== fsm uu rr , then ),0,0,0( wdiagu i =  and 
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( ) ( ) ( )

μ
10

33
0
22

0
11 =Ω=Ω=Ω . 

We have 
( )

( )
μ

εμ 1,1,1,1
0

diagij =Ω . We introduce now two magnitudes: 

 

a) 
( ) ( )0

*

0
detdet ijij ΩΩ=σ ; 

 

b) ijijw *detdet ΘΘ= , 

where 
( )

( ) ijij diag *

0

* 1,1,1,1 Θ==Ω . 
So we have in Maxwell's electrodynamics two scalar functions, which form 

two scalar co-homological groups ( )AGH ,0  [4]. Really, for any group Gg ∈  and 
any scalar elements σ∈a , w  we receive the condition aag =  and ( )AGHa ,0∈ . 
This means that the dynamic of the electromagnetic field inertia are governed by two 
co-homological groups ( )AGH ,0 : σ∈a , wa∈ . 
 

Conclusions 
 

Now we understand that the dynamic change of the electromagnetic field in-
ertia is based on two 0-cohomological groups: one of them governs the proper field’s 
inertia and the other governs the external field’s inertia. 
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Part 5 
ACTIVE SYMMETRIES AND ISOMETRIES 

OF THE MAXWELL’S ELECTRODYNAMICS 
 

RESUME. It is shown, that Maxwell's electrodynamics without the velocity 
restriction has for the rest and moving media an isometry group which is the Lorentz 
group with generators and parameters depending on its 0-cohomologies, governing 
the dynamics of the frequency and the velocity of an electromagnetic field in Newto-
nian space-time. 
 

Introduction 
 

In the first and second parts of this series the generalized connections between 
fields and inductions in Maxwell's electrodynamics for moving media are proposed. 
They have allowed agreeing experimental dates with the solutions of the equations 
within the framework of Newtonian space-time, without use of the special relativity 
theory. In this article the local isometric symmetries for offered combined equations 
are studied. It is shown, that they depend on 0-cohomologies in such a manner that 
the dynamical changes of the frequency and the field velocity are in concordance 
with the Galilee and the Lorentz group, which are physically supplement. They oper-
ate in tangential space with the local metric, associated with the connections between 
fields and inductions both in the rest and the moving media. Newton's space at such 
approach is the base of the fibre bundle manifolds, which remains invariable, if the 
isometry group is acting in the fibre. 
 

5.1. Active symmetries of Maxwell equations 
 

It is known, that the Maxwell's tensor equations - 0][ =∂ mnk F , iik
k SH =∂  

are invariant for the 20-parameter Lie algebra of the group ( )RIGL ,4 , containing the 
Poincare sub algebra ( )3,1AP  and the Galilei sub algebra ( )3,1AG  [1]. The simple 
proof of this fact we can find in the Post's book [2]. It is obvious enough, because the 
Maxwell's equations represent linear expressions for tensors, which are derivate from 
tensors of the second rank mnF , ikH  and the covector derivatives. Schouten has 
shown [3], that viewed system has general covariant if covariant, derivatives take the 
place of partial derivatives. Moreover it is only one, if there are no other fields. The 
tensor connection for fields and inductions in form mn

ikmnik FH χ=  has the general 
covariance symmetry by virtue of the tensor definition. It is clear, that an invariance 
of the equations is not enough for the physical analysis, if the group is so large. The 
situation varies, when the requirement, that the symmetry is an isometry, is added. 
Then the coordinates and time transformations are considering, for which the sym-
metric tensor ijg , viewed as the metric of tangential space with the interval 

ji
ij dxdxgds =2  is invariable. In this case the interval has the same form in different 

coordinate frames. From the topological point of view the isometry requirement 
means, that the 0-cohomologies of the metric are identical. We have the expres-
sions ( )ξdet=a , ( )ξspb = , where ( )ξ  is the metric tensor of the tangential space, 
given in the matrix form. As we are interested in solution for concrete conditions it is 
naturally to select these solutions from the analysis of the connections between fields 
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and inductions for the electromagnetic field. We will study isometries for the rest and 
the moving media. 
 
 
 

5.2. Isometries in the rest media 
 

Let ED
rr

ε= , HB
rr

μ= . The connection 
( ) ( )

mn
knimik FH

00

ΩΩ=  gives the tensor 
( )

( )εμ
μ

,1,1,110

diagim =Ω . 

We will find the isometry group for the condition 
( ) ( )

ji
ij

ji
ji dxdxdxdx

0
''

0

'' Ω=Ω , 

when ijΩ  is identical in hatched and not hatched coordinate frames. Let us note, that 

ε , μ  depend on Newton's space coordinates and ijΩ  too. But for tangential space 

this dependence is parametrical, because we study the connection between 'μdx  and 
μdx . It is easy to see, that coordinate transformations 

2
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2
1
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⎞

⎜
⎝
⎛ −

−
=

c
v

vdtdxdx

εμ

,    dydy =' ,    dzdz =' ,    
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1
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⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

c
v

dx
c
vdt

dt

εμ

εμ
 

are isometries (at constv = ) because 
2222222222

1'1''' dtcdzdydxdtcdzdydx
εμεμ

−++=−++ . 

We note, that at 1=εμ  we receive the Lorentz transformations. For any other values 
( 1≠εμ ) there are other values of "maximum velocities", equal ncc =* . By direct 
substitution, following [4], easily to prove that Maxwell's equations maintain its form 
at the transformations with const=εμ . Then the connections ED

rr
ε= , HB

rr
μ=  are 

transformed to '' ED
rr

ε= , '' HB
rr

μ=  in accordance with the rules: 

xx EE =' , ⎟
⎠
⎞

⎜
⎝
⎛ −= zyy B

c
vEE γ' , ⎟

⎠
⎞

⎜
⎝
⎛ += yzz B

c
vEE γ' , 

xx BB =' , ⎟
⎠
⎞

⎜
⎝
⎛ += zyy E

c
vBB εμγ' , ⎟

⎠
⎞

⎜
⎝
⎛ −= yzz E

c
vBB εμγ' , 

xx DD =' , ⎟
⎠
⎞

⎜
⎝
⎛ += zyy H

c
vDD εμγ' , ⎟

⎠
⎞

⎜
⎝
⎛ −= yzz H

c
vDD εμγ' , 

xx HH =' , ⎟
⎠
⎞

⎜
⎝
⎛ += zyy D

c
vHH γ' , ⎟

⎠
⎞

⎜
⎝
⎛ −= yzz D

c
vHH γ' , 

2
1

2

2
1 ⎟

⎠
⎞

⎜
⎝
⎛ −=

c
vεμγ , 

which confirm our conclusion. In this approach the isometry group operates in tan-

gential space with the metric 
( )0

ijΩ , associated with the connections between fields 
and inductions. We have therefore the space of events SE. It is locally Riemannian 
space. The Newton's space, in which one we are describing the electromagnetic phe-
nomena, is self-dependent and forms the space of state SS. So, we will adopt the 
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point of view, that Maxwell's electrodynamics is based on two spaces, which are in-
dependent. As it is enough to have such model for the explanation of the experimen-
tal facts, we understand, that the pair of spaces (SE and SS) indicated there is enough 
too. However it is only physical conclusion, but its mathematical essence remains 
vague. Also the equations are invariant 
 

[ ] [ ]( )BEHD
rrrrrr

×+=×+ βεβεμ ,  
 

[ ] [ ]( )βμβεμ
rrrrrr

×+=×+ DHEB , 
 

cur
r
=β . 

 
There are no inconsistencies with the previous deduction, because, as it is easy to see, 
the "convective" terms of the connections are canceling each other. 
 

5.3. Isometries in the moving media 
 

At the beginning of this series it is shown, that the connections ED
rr

ε= , 
HB
rr

μ=  can be extended for the case when the medium has the velocity mur  and a 
primary source has the velocity fsur . For this purpose we use the velocity 

( ) mfs uwuwu rrr
+−= 1  and also the tensor ( )wdiagg ij ,1,1,1= . We deduced the tensor 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+=Ω jiijij uu

w
g 11 εμ

μ
, 

connecting the fields and inductions in the moving media. 
Let us show, that the similar expressions follow from the assumption, that the 

tensor ijg , depending from w , is isomeric in the tangential space of events SE. We 

will receive for the metric ijg  the isometry (similarly to the isometries in the rest 
media) in the form: 

2
1

2

2
1

'

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

c
vw

vdtdxdx ,    dydy =' ,    dzdz =' ,    
2

1

2

2

2

1

'

⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

c
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dx
c
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dt . 

Now it is easy to find the fields and inductions transformations concerning this iso-
metry. The connections, which are invariant for the isometry transformation, receive 
the next form: 

[ ] [ ]( )BEHwD
rrrrrr

×+=×+ βεβ , 
[ ] [ ]( )βμβ

rrrrrr
×+=×+ DHEwB . 

Earlier we deduced that these connections correspond to model of the dynamical de-
scription of the relativistic effects in Maxwell's electrodynamics without special rela-
tivity theory. In this approach the isometry can be used not only for the kinematic 
explanation of the class of the equivalent solution, as it is accepted in special relativ-
ity theory, but for a deduction of the equations, connecting fields and inductions. 
Such approach has been offered initially by Minkowski [5]. Let us express B

r
 and D

r
 

through E
r

 and H
r

. Then 
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( ) ( ) ( ) ( )[ ]{ }HEwHwB
rrrrrrr

⋅−×−+−
−

= ββμβεμβμ
εμβ

2
2

1
1

1 , 

( ) ( ) ( ) ( )[ ]{ }HHwEwD
rrrrrrr

⋅−×−+−
−

= ββεβεμβε
εμβ

2
2

1
1

1 . 

From the obtained relations follows, that at εμ=w  we receive the isometries for the 
rest media and the equations ED

rr
ε=  and HB

rr
μ= . The isometries, depending on 

w , if to distract from the method by which one they are obtained, represent the 
symmetry class, which is parametrically dependent from w . But, as it was indicated 
earlier, the quantities 

( )ijga det= ,    ( )ijgspb = , 
give the 0-cohomologies, introduced by Hochschild [6]. They do not vary at the iso-
metry transformations because of the invariance of the metric tensor. It is known, 
that the cohomologies characterize the topological properties of the phenomena. In 
this case they are expressed by ( )xw . At 0=w  we have Galilee’s symmetry. At 

1=w  we receive the canonical Lorentz's group. In general case we use expression 
[ ]00exp1 ρρPw −−= , where 0P  - relaxation constant, ρ , 0ρ  - densities of the 

media. Therefore the change of the quantity ρ  gives the change of the local isometry 
corresponding w . In the dynamic process for the electromagnetic fields the fre-
quency change and the velocity change are governing by the Galilee’s and Lorentz's 
groups. The isometry bears no relation to the structure of Newtonian space, in which 
one the phenomena are considered. Therefore it is possible to construct the fibre 
bundle manifold with the pair of the spaces SE and SS [7]. Our situation is standard 
for such approach. It is clear, that we can use the Newtonian's space as the base of 
this manifold and the isometry group as its fibre. So we receive the models widely 
used in the differential geometry. 
 

5.4. 0-cohomologicaly dependent active Lorentz transformations 
 

Let us show the algorithm, following to which one, we can receive general-
ized transformations, depending on w , using the canonical Lorentz transformations. 
In the first place we will use the Lorentz transformations in the infinitesimal form 

s
sAIg ω+= , 

where sA  are the generators of the symmetry, sω  are the parameters of the symme-
try. 
Let us associate with the Lorentz symmetry the 0-cohomology group, consisted of 
the scalar functions ( )xw . Analogical functions can be introduced into the physical 
theory by different ways. The magnitudes ( )xw  in the interval (0÷1] form the multi-
plicative Abelian group. It is obviously, that the representation of this group is 

( )wdiagQ ,1,1,11 =− . Now we will modificate the canonical Lorentz transforma-
tions. Let 

QAQA ss
1~
−= ,    ( ) cuwcuwcu s

m
s
fs

s +−= 1~ . 
Here we have, apparently, the class of the algebraically equivalent generators of the 
symmetry and the class homotopically equivalent parameters of the symmetry. So we 
receive 0-cohomologicaly dependent transformations 

s
sAIg ω~~

+= . 
Using this method, we deduce the generalized generators of the Lorentz group in the 
form 
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They give the isometry group for the moving media, which was described above. It 
depends on the 0-cohomologies and consequently it is necessary to consider it as the 
0-cohomologicaly dependent Lorentz transformations. Using the change of w  we at-
tempt to take into account the topological aspects the electromagnetic field. For this 
reason we can interpreted the dynamic change of the frequency and the velocity of 
the field as the change of its topological aspects. 
 

Conclusions 
 
The 0-cohomologicaly dependent transformations of the coordinates, which 

are expressed by the isometries in the rest and moving media, permit to describe the 
dynamic states of the electromagnetic field interacting with medium. The symmetry 
of the vacuum equations is given by canonical Lorentz transformations and it is the 
isometry group. Using 0-cohomologies and proposed algorithm of the symmetry 
modification, it is possible to find all class of the isometries and the equations for the 
moving media. 
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Part 6 

The dynamical influence of the classical 
experimental equipment at the electromagnetic field 

 
RESUME. The dynamical influence of the classical experimental equipment 

at the electromagnetic field is described by the class of the Lorentz's transformations 
dependent on 0-cohomology group ( )xw . They act in the space of events SE, which is 
additional to the Newton's space. 
 

Introduction 
 

In part 1 and part 2 of this series we have shown, that Maxwell's electrody-
namics with the generalized connections between the fields and inductions gives the 
dynamical description of the relativistic experiments in Newton's space-time without 
using the special relativity theory. This possibility is based mathematically on the 
dynamics of the 0-coho-mology group with the elements ( )xw , which govern the be-
havior of the field's parameter. This possibility is based physically on proposed new 
property of the electromagnetic field: at the dynamical change of its external inertia. 
Part V of this series suggests an isomerty group for the moving media in the form of 
the Lorentz's transformations dependent on the 0-cohomology group, which acts in 
the space of the events SE. This dependence allows giving the dynamical explanation 
of the relativistic experiments, using the space-time transformations, concerning the 
structure of the space of the events SE. So we receive the generalized kinematic 
method, which we can use additionally to standard physical description. Really, it is 
known, that the symmetry of the equations, describing the physical events, gives the 
class of the model solutions. It is useful, for this reason, to consider the class of pa-
rametrical symmetries, if we want to compare the different experimental results. 
We can use this method in the real practice. We will suppose at first, that the experi-
mental equipment is the real medium (with the special concrete construction) and, 
secondly, that the measuring is the interaction of the experimental equipment with 
the electromagnetic field. We will describe the experimental equipment by means of 
the rate of the refraction ( )xnd  and the velocity dur , which is analogous to the me-
dium velocity mur . We will use the phase inertia ( )xwd , which describes the dynami-
cal change of the external field's inertia. This method allows us to give two ways for 
the description of the interaction of the experimental equipment with the electromag-
netic field. First way includes the solution of the Maxwell's electrodynamics with the 
generalized connections between the fields and inductions with the parameters 

( )xnd , ( )xud , ( )xwd . Second way includes the generalized space-time transforma-
tions with the parameters dw , dur . They act in the space of the events SE, which is 
associated with the connections between the fields and inductions. 
 

6.1. Lorentz's transformations dependent on the 0-cohomology   
group  
 

We will modificate the infinitesimal Lorentz's transformations 
s

sAIg ω+= , 
using the 0-cohomology group G with the elements ( )xw , which  is related with the 
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rate of the refraction ( )xn  by the equation [1]: 
( )[ ]1exp1 0 −−−= nPw . 

We will use the magnitude 
( )wdiagQ ,1,1,11 =−  

as the representation of the 0-cohomology group G. We will transform the generators 
sA , using the rule 

QAQA ss
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−= . 
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Let the parameters of the Lorentz's group sω  are invariable. We will derive the gen-
eralized space-time transformations, according the equations 

( ) v
v

S
S dxAIdx

μ
μ ω~' += . 

Let us introduce Θ=4ω . We have deduced, that  
0111 ' dxdxdx Θ= -w- ,    100 ' dxwdxdx Θ+= ,     22 ' dxdx = ,     33 ' dxdx = . 

These transformations for ε>>Θ  have the form 
Θ−Θ= − sincos' 111 icdtwdxdx ,   22 ' dxdx = , 

Θ−Θ= sincos' dxw
c
idtdt , 33 ' dxdx = , 

where 
xx =1 , yx =2 , zx =3 , ictx =0 . 

Let us introduce the coordinate system with the velocity v, which corresponds to the 
condition 0'1 =dx : 

c
vwitg −=Θ . 
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and the space-time transformations 
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c
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c
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dx
c
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dt . 

For w=0 we have the Galilee’s group, for w=1 we have the canonical Lorentz's group. 
In general case these transformations describe the action of the Lorentz's group, de-
pendent on 0-cohomology group ( )xw , in the tangential space. When the magnitude 
( )xw  changes, then the space-time transformations give the dynamical change of the 

magnitudes{ }'kdx , if we consider constdxk = . This approach is different from the 
method of the special relativity theory, when constdxk =  corresponds to 

constdxk =' . Now we have some new possibilities. 
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6.2. Approximation to the real situation 
 

In real situation we have at least two experimental equipments and each of them 
has an influence at the electromagnetic field. We will take into account these influ-
ences using the 0-cohomology group ( )xw1  and ( )xw2  in accordance with the Lor-
entz's group dependent on 0-cohomology group. For this aim we will use two repre-
sentations ( )1

1
1 ,1,1,1 wdiagQ =−  and ( )2

1
2 ,1,1,1 wdiagQ =− . We will transform the 

Lorentz's generators using the rule 

12
1

2
1

1

~~ QQAQQA ss
−−= . 

Following the definition 
s

sAIg ω
~~

+= , 
we will receive the transformations [1] 
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The metric tensor 
( )2

2
2
1 ,,1,1,1

~~ wwdiagg ij =  

is isometric for its action. The magnitude ijg
~~  describes the generalized space of the 

events SE. Now we can analyze many different situations in an unified manner. The 
magnitude 2

2
2
1 ww  governs the group. We have the Galilee’s group, if 01 =w  or 

02 =w . These situations realize at the initial stage of the real measurements, when 
the experimental equipment has no influence on the electromagnetic field corre-
sponding 0≡iw . We have the Lorentz's group, if 11 =w  and 12 =w . These situations 
realized at the final stage of the real measurements, when the influence of the ex-
perimental equipment on the electromagnetic field gives final magnitudes of the dy-
namical changes, corresponding 11 =w . We note, that the proposed method takes into 
account the different dispositions (places) of the experimental equipments, because 
we can use ( )( )Axw i

1  and ( )( )Bxw i
2  where A and B are different coordinates. It is 

important for real experimental situation. In general case we must use the operator 
'β

βA  in form [2] 

{ } { }
111222 ,,,, '' wAtwAt dxAdx ββ

β
β = . 

This operator may be very complicated, following the real situation. It is clear, that 
this generalized kinematic method can be used additionally to the dynamical descrip-
tion of the electromagnetic processes. 
 
 
 

6.3. New operation and nonassociativity 
 

We derived some space-time transformations with different magnitudes iw . 
We will introduce a new operation for the generalized Lorentz's transformations. Let 

( ) ( ) jiJi gijgijgg ππ ⋅=* . 

Here the operation ( )ijπ  gives 
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( ) ( )225.0 ji wwijw +=  

and replaces iw  and jw  by ( )ijw  for the elements ig  and jg . Then we use the ma-

trix multiplication. We will deduce for the velocities iv , jv  that 
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This law gives the nonassociativity [2], because 
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The associativity corresponds to the situation, when K=== kji www  It is easy to 

derive the general condition for the elements ( )hgk ,, : 
( )( ) ( )( )hggkkggh ∗∗∗=∗∗∗ . 

We have a new loop [3], for which  
 
( ) ( ) ( )gkghgkh ∗∗∗≠∗∗ , 

( ) ( ) ( )kghgkhg ∗∗∗≠∗∗ , 
( ) ( ) ( )( ) ( )( ) ( )( ) hggkggkhgkhgkghg ∗∗∗+∗∗∗+∗∗∗≠∗∗∗ . 
 

These laws illustrate the complexity of real situations, which take place in the 
electrodynamics with active cohomologies, when ( ) constxw ≠ . The special relativ-
ity theory corresponds to the particular case, when 1=== kji www . 

 
6.4. Practical aspects 

 
1. In part 1 of this series is derived the formula for the group velocity of the 

electromagnetic field 

( )[ ]mfsg uwuw
n
w

K
K

n
cv rr
r

r
+−⎟

⎠
⎞

⎜
⎝
⎛ −+= 11

2
. 

Here mur  is the matter velocity, fsur  is the primary source velocity, n is the rate of the 
refraction, w is the phase of the external field inertia. For 0=w  we have the formula 

fsg u
K
Kcv r
r

r
+= , 

showing the dependence of the group velocity gvr  in vacuum from the primary source 

velocity fsur . But 0=w  for the experimental equipment corresponds to the situation 
without the interaction with the electromagnetic field. We must use for this case only 
indirect measurements. 
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2. In Fizo interferometer 0=fsu  and we can use the gas, as the medium with the 

velocity mur . So we have the formula 
 

mg uw
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n
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r
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2
1 . 

 
We can receive the velocity cvg > , changing the velocity mur  and the magnitude w. 

 
 
 
3. Earlier we received, that the frequency of the light 0w  has the form 
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where 22 QQ +=Ψ , Qn += 1 . This law has the dependence on w and n. These re-
sults help us to make new assumptions on the behavior of the light. 
 

Conclusions 
 

We have shown that 0-cohomologies ( )xw  can play the main role in the ex-
perimental investigations of the dynamic of the electromagnetic field. The Lorentz's 
transformations dependent on the 0-cohomology group ( )xw  give the analytical form 
of the dynamical influence of the experimental devices at the electromagnetic field. 
By this way we receive some new physical effects. 
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Part 7 
NEW WAYS 

FOR THE ELECTRODYNAMICS MODELS 
 

RESUME. It is shown, that classical electrodynamics in the spinor form has 
some new points for the development: non-euclidean structure of the three-
dimensional space for the potential nA ; the possibility to use the symmetrical wave 
function; the classification of the topological deformations for the space of the 
events. 
 

Introduction 
 

The present work shows the new possibilities for the development of the clas-
sical electrodynamics, which are based at its spinor form and the active 0-
cohomologies for the connections between the fields and inductions. The topological 
sense of the metrics ijξ , which are used for the space of the events SE, is studied.  
 

7.1. Non-euclidean three-dimensional space 
 

Part 3 of this series shows the spinor form of the Maxwell's electrodynamics 
if we will introduce 
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We will find the algebraically form of this expressions using the standard connection 
between the fields ( )BE
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,  and the four-potentials kA . Let [1] 
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We receive for ( )ct∂∂=∂τ : 
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We have, using ( ) ( )4, Vba ii ∈  (according part 3), that 
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where ictT −= , ( )ictT −∂∂=∂ . 

We can introduce three non-euclidean metrics, which algebraically act at the four-
potential kA : 

( ) ( )41,1,1,1 1 Vcdiagk ij ∈=−−= , 
( ) ( )41,1,1,1 2 Vcdiageij ∈=−−= , 
( ) ( )41,1,1,1 3 Vcdiagmij ∈=−−= . 

The matrices ( )Eci ,  form the sub algebra of the ( )4V  algebra with the conditions 
{ }jik

k
ijijji ccccccc ,==+ α . 

We have also the metrics αβr , αβg , αβn : 

( ) Ediagg == 1,1,1,1αβ , 

( ) ( )3215.01,1,1,1 cccEdiagr ++−=−=αβ , 

( ) ( )0,1,1,15.0 diagrgn =+= αβαβαβ . 
We use this metrics in the spinor form of the Maxwell's electrodynamics. 
 We will deduce these and other metrics using 
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So we have idempotential elements: 
ii Π=Π 2 . 

It's easy to see, that 
YYXYYXXXgE ⊗+⊗+⊗+⊗== αβ , 
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We have now many metrics in Maxwell's electrodynamics with non-euclidean three 
dimensional spaces. 
 

7.2. Symmetrical wave function in the electrodynamics 
 

At the quantum level the electromagnetic field describes the quasiparticles - 
photons - as the particles with the spin 1. We must describe such particles, following 
the Pauli principle [2], by antisymmetrical wave function. The tensors ( )ik

mn HF ,  
play this role (see part 1, part 3 of this article). We will deduce the description of the 
electromagnetic field in the spinor form by the symmetrical wave function, using the 
subgroups ( ) ( )4, Vfe ii ∈  and some additional elements. Let us use the spinor's base 
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We will construct 
xxx iBE +=Ψ ,    yyy iBE +=Ψ ,    zzz iBE +=Ψ ,    0=Ψt , 

if we know the vectors ( )BE
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,  in the Newton's space 13 TR × . We have now two con-
structions: 
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where ( ) ( )4, Vea kk ∈ . 1Φ  is the antisymmetrical function, 2Φ  is the symmetrical 
function. The spinor wave function 

( )0,,, zyxcolumn ΨΨΨ=Ψ  
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rical wave function is possible in the Maxwell's electrodynamics, if we use its spinor 
form. The permutation of the components kΨ  gives new matrixes: 
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The analysis, proposed in [1], introduces the matrixes 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
0

,
0

0
,

0
0

,
0

0
a

b
a

b
b

a
b

a
iρ , 

 
 
which are combined from the matrixes a and b. We can consider iρ  as the result of 
the new operation ∗  : bai ∗=ρ . So we receive the coalgebra W(4) [3]. If we use 
Q=a, QQb *= , we will deduce the coassociative rule 
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Obviously, we have the commutativity: 
 
( ) ( ) ( ) ( )1221

** GGGG = . 
 
For this reason we understand, that the spinor Ψ  can be combined from the symmet-
rical wave function 2Φ , using the algebra V(4) or else coalgebra W(4).  
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7.3. Four 0-cohomology dependent metrics in physical theories 
 

The algebra V(4) has two functions 
 
( )AIDetY −= λ1 ,    ( )AISpY −= λ2 . 

 
The elements ( )ii ba ,  formed the communicative sector with ( ) ( )22

1 1, −= λbaY . In 

the anticommutative sector for ( )iii fec ,,  we receive ( ) ( )22
1 1,, += λfecY . We will 

present these formulas by the fig.2. 
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We can introduce 0-cohomologicaly dependent canonical metrics for the space of the 
events SE in the form 
 

( ) ( )ijijijij gnrdiag ,,1,1,1,1 ⇒⋅== λξ , 
 
where λ  is the root of the function 1Y . We have used these metrics in the Maxwell's 
electrodynamics with active 0-cohomology (see part I, II, III of this article). We will 
study the possibilities of the metrics ijξ  changing. We will introduce 

21

* ~~ YYY βα +=  
 
with ( )βα ,  as the arbitrary functions. Let us introduce 
 

AIDetY ~~~
1 −= λ ,    AISpY ~~~

2 −= λ . 

 
Here A~  is the matrix in which the canonical elements, equal ( )1± , are replaced by 
arbitrary magnitudes (a, b, c, d). For example, we have the transformation: 
 
 
 

Fig.2. The 0-cogomology 
curves of the algebra V(4). 
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Thus we introduce 10-parametrical space of the 0-topological deformations with the 
magnitudes 
 
 
( )βα ;;;;;;;;; 4321 aaaadcba . 
 
 

The function 
*
Y  has the form 

 
 
( ) 01

2
2

4 σλσλσλλ +++=V . 
 
 
The Milnor space [3] with the coordinates ( )012 ,, σσσ  is only the three dimensional 
surface in the ten dimensional deformation space. The analysis of the topological de-
formations is known [3]. We receive all 0-cohomological dependent metrics ( )SEg ij  
. 
 
The left side of each picture shows the "stability" (in the sense of the stationary 
phase) of the ijr  metrics (Euclidean's type), the right side of each picture shows the 
"stability" of the ijg  metrics (Minkowski's type). We have the system of bound states 

[4]. It is useful, to consider the function 
*
Y  as the analogy of the Higg's potential [5], 

supposing 
 
 
 
( ) cbaV ++= 24 ϕϕϕ . 

 
 
We understand that the "stability" of the metrics ijξ  is the reaction of the electro-
magnetic field at the topological deformations for the space of the events SE. Conse-
quently, in the classical electrodynamics there is the mechanism of the 0-
cohomology dependent deformation of the field parameters, which has the analogy 
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with the spontaneous symmetry breaking in quantum electrodynamics. This mecha-
nism is based on the space of the events with the system of the metrics ( )SEijξ . The 
metrics ijξ  are realized in the 10-parametrical space.  
 
 

 
 
 
Fig.3. 0-cogomological dependent metrics ijξ  
 
 

Conclusions 
 
We have found new points for the development of the classical electrodynam-

ics: non-euclidean structure of the three dimensional space for the potentials nA ; the 
possibility to use the symmetrical wave function; the classification of the topological 
deformations for the space of the events. 
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CONCLUSIONS 
 

Now we have dynamical model of the relativistic effects in electrodynam-
ics. We understand that the physics of the light phenomena is based on the ac-
tive 0-cohomoloqies. We are received the model without the velocity restriction 
and singularities. In this situation we can do new theoretical and practical steps 
forward to the investigation of the light particles structure. 
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