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Part 1
Generalization of Maxwell's electrodynamics
in moving media

RESUME. Generalization of Maxwell's electrodynamics in moving media is
suggested, which, first, does not resort to the Einstein special relativity theory,; sec-
ond ,bases its calculations and experiments on Newton's space; third ,naturally in-
corporates superlight velocities and indicates the requirements for the latter to be
discovered, and fourth ,describes the classical experiments of Bradley, Michelson,
Fizeau, and Doppler in a unified manner.

Introduction

We shall show the possibility of DYNAMIC description of a change of the in-
ertial factors for an electromagnetic field within the framework of the NEWTONIAN
space - time, in a single coordinate system, when the frame of reference is considered
as a physical environment capable of influencing the parameters of the field.

1.1. Maxwell's dynamic equations in the Newtonian space-time

We will start with the concept of a single observer who has the standard of
length and time according to Newton's space-time model R? x7'!. The physical laws
of Maxwell's electrodynamics in R?® x7! can be determined in terms of the three-
dimensional operators V x and V - and they have a vector form:

VxE=-18 v.B=0,
c Ot
V~l3=471,0, Vxljl=la—D+4ﬂi.
c Ot c

In the algebra F(4) elements form

0 B, -B, -iE,
- -B., 0 B, -iE,
™ | B, -B, 0 —iE_|
iE. iE, iE. 0
0 H -H, -iD,

| THe 0 H: ~iD,
H —-H_ 0 —iD_ |
iD, iD, iD, 0
Maxwell’s equations acquire the tensor form:
OuF,,=0,0H" =8,
where 0, is the covector of partial derivatives, for example over the coordinates

1 2 3 0 .
X =X,X" =y,Xx =z,x =lict.



Physically speaking, these sets of equations are equivalent; however, it is more con-
venient to carry out the mathematical analysis of general problems in the tensor
form.

Starting from these equation, and not resorting to the concept of an ether, we will de-
scribe in a unified manner the experiments of Bradley [1], Fizeau [2], Michelson [3],
and Doppler [4], the "constancy" of the speed of light in vacuum [5], following the
model of dynamic change of field parameters in the NEWTONIAN space-time.

1.2. Generalized connections between fields and inductions
in Maxwell's electrodynamics

For an isotropic medium at rest the connection between fields and inductions
has the form: D =¢E ,B = uH , where & and u are the dielectric and magnetic
permeability’s.

In the version considered by Minkowski [6], the medium is a secondary radiation
source, so the medium velocity U ., 1s identical with this velocity of the radiation

source:

5{"_“}7}:8(& U—BD

C _C

T g o [.0

B+{Ex—m}=,u[H+ X ’"D.
C L C

We will seek connections between the fields F,, and inductions H* [7] in the form:

ol

H* =Q"Q"F, .

Let Q™ be equal to

Q" =al0™ + pu'um),

where a and S are scalar functions, ®” =diag (1,1,1, y) is the metric tensor in
R3xT', and y =det®m, U' =dx'/dO® represents the four-velocities, without in-
voking SRT.

Here we have d®° = @ U.dxidxj , and the inverse tensor can be specified in two ways:

a) ©,0" =5/,b) ®, =b,b,0", where b, are additional tensors.

In such a statement the expression for Q™ has been found 8] by solving a system of
nonlinear algebraic equations following from the generalized formal connection for
fields and inductions, when the connections are considered for the velocity equal to
zero. Then

Q" :L{(a"m +[ﬂ— ]U"U’"}.
Ju P

The tensor Q™ has no singularity at y = 0. Really,

] 2 % k k 2 7%
d@:ﬁ(l_ﬂ_] Dt Az [l_zv_j |
\/; c? d® ic dt c?




For the velocities U, =®,,U" we have U*U, =1.In view of the antisymmetry of

F and H*, we have

mn

HiE —Qimp i _ O’S(Qikan _Qianm>

with the conditions
Qikmn — _Qiknm — _Qkimn
Maxwell's generalized equations take the vector form [9]:

1.3. Main model problem

Let a radiation source move around the Earth in vacuum with instantaneous
velocity U > which is the velocity of the primary radiation source U =0 =U 5 -Let
the radiation spread from empty space into the atmosphere of Earth's ,which has den-
sity p, in which for p = p, the velocity of the secondary radiation source is equal to

the velocity of the physical medium U :

g 0.

P=Po

Let us introduce the velocity U=U (U & U . w( p)) assuming that it also depends on
the functional w(p), which is named the phase of the inertia of the electromagnetic
field. We will assume that in agreement with the indicated physical formulation [7],
the velocity U is governed by the relaxation equation

W__pg-0,). 0],.0=0,.
&
Here P, is the relaxation constant, & = P The solution of the relaxation equation is

Po

U =(1—w)lj/;v +wU, , w=1—exp[—PO£].
0
We have the conditions

U =U

‘p:po :Um > W

P=Py

=0,

p=0g 5o p=0

We require that y = w. The solution of the indicated problem is then in general pos-
sible.

1.4. Solution of Maxwell's generalized equations with w = const

When w = const,the equations for the field potentials A4, in their four-
dimensional form are [10]:



@kn

0 —(g,u—w)(U’fijz A =—ulUioe.
Oxk Oxn Ox* " "

with the calibration condition:

o4 o4
ok o —(g,u—w)ax—,iUlU" =0.

For vector A and scalar @ potentials, according to their definitions

E=—18—A—V¢), B=VxA
c ot
we obtain
- - P U( - 2 U? UJ
LA:—47W{J+ ol g(wUJ—czp)},L(p:—Mz,u d {p(l—gy—zj+o——2},
c o+wc w+o c c
and the calibration condition
- 2 2 R Y
A AL A bl (UG (57
c Ot c? \ ot
where
w 9’ (e -\ | U
L=|A-=——|-0—|=+U0V |, oc=su-w, T2=(1-wp2)", p==.
( c’ atzj c’ (Gt j a ( p ) p c

The Green function for the vector equations is indicated in [7]:

— 3242

G, (Ft) =167t pu(r2 + &2 25| - L ELZPW (1h Lo |,
¢ (1-wp2)\eu
It is given in a cylindrical coordinate system, the position vector for which has
l
lengthR = (,o2 +z° )A , and the values are equal to
— 2 —

o ppll=w) o emw
eu—pw eu—pw

When g =0, we have the Green function for the medium at rest without dispersion:

R ¢
G, (7, t)(0=0=167r4,u%0'[t— clu]'

The Green function differs from zero on the surface:

_1ogqu—prwr | su(l-wp?) (_ £ —w UJZ
’ c(l—wm@[p - pw -

This is an ellipsoid of rotation whose symmetry axis coincides with U , and the posi-
tion of the center is given by
EU—W

su— frw*

b

z, =Ut

The center of ellipsoid moves with the velocity

7



ELL—W
su—Bwt
The semi axes of an ellipsoid are equal to

a=ct L=wpr § b:ct—@(l_wﬂz)
gu-prwr) su=prwr

U, =U

The dispersion equation for the electromagnetic field has standard form [11]:

c?K? =ww? +F2(£u—w)(a)—lz-(7)2,l"2 =(1-wp2)",

where K is the wave vector. This yields the expression for the group velocity:

)
)

!

- Ow 12+O'FZC’2U((U—K-
Vg =—=C
oK _g.

<

w

—w+ol2c¢! (a)
c

In a nonrelativistic limit

7 :£§+[1—1][(1—w)(7f3 il

n2

1.5. Analysis of the expressions obtained

1. At w=0 we have

V =c¢

g

>

+U,.

Thus, in the generalized model of electromagnetic events the field moves such that
the center of the surface on which the Green function is nonzero moves with the ve-

locity U > and the semi axes of the ellipse in this case are equal, giving a sphere..

This picture corresponds to an intuitive comprehension of the fact, according [12], in
the absence of external influences, the field in vacuum retains its inertia.
2. The generalized electrodynamics of Maxwell's one is consistent with the experi-
ments of Michelson [3]. According to the conditions of his experiment, the velocity
of the medium was equal to zero, U, =0, just as the velocity of the radiation source.
For this reason we have the radiation velocity to be independent of the direction:
- ¢k
V,=——.

n K
3. The generalized electrodynamics of Maxwell is consistent with the experiment of
Fizeau [2]. According to the experimental conditions U s =0 and w=1, therefore

the velocity is equal to

2SN P U .
& nk nz) "



Conclusions

The generalization of Maxwell's electrodynamics, which allows one to de-
scribe in a unified manner a vast quantity of experimental data without resorting to
the special relativity theory, is possible if the connections between the fields and in-
ductions is taken into account.

The functional w() and also the velocity that specifies the external inertia of the

field U = (1 - w) U st wU ,, change in this case dynamically, which are the determin-

ing factors for the velocity I7g and the frequency @ of the electromagnetic field.
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PART 2
Dynamic mechanism of the external velocity transforma-
tions into a proper frequency of an electromagnetic field

RESUME. The earlier unknown dynamic mechanism of the transformation of
the velocity that specifies the external inertia of a field, into a proper frequency of
an electromagnetic field is found. It is shown that a particle of nonzero rest mass can
be limited at the particle velocity equal the light speed in vacuum.

Introduction

Part 1 of this article suggests a generalization of Maxwell's electrodynam-
ics in which the dynamic equations are used without involving any new elements,
while the connections between fields and inductions are extended. The generalized

connections contain the velocity of a primary radiation source U ,, the medium ve-

locity U .» and also new quantity, namely, the external inertia phase of the electro-
magnetic field w(p) :l—exp(— VA % ), where p - is the atmosphere density.
0

The calculation of the field parameters and analysis of experimental data are car-
ried out in Newton's space model. The absolute character of length and time are the
foundation of the proposed algorithm for a dynamic change in the inertial parameters
of the field.

The equations for field potentials, following from Maxwell's generalized
equations, are obtained. The Green's function is found and its physical consequences
are analyzed. A generalized expression for the field group velocity is obtained. The
dependence of the field velocity in vacuum on the primary radiation source velocity
is shown.

Now, we will study a dynamics of the field frequency.

2.1. New requirement on a wave phase

The group velocity of an electromagnetic field for w — 1 does not depend
onU - Physically this change of the speed can and must be exhibited as a change in
frequency. Since a dynamic change in the speed is considered, consequently, there
will also be dynamic change in the frequency @. To understand, the manner in
which this occurs, we supplement the dispersion equation with the generalized phase
requirement [1]:

co—K-Ui

Y
9

This requirement does not follow directly from Maxwell's equations and, conse-

= const .

quently, we will assume that the velocity U ¢ can be different from the radiation car-

10



rier velocity U . By analogy with the already adopted algorithm and the model of the
analysis, we will consider the new velocity U ¢ in the following form:

Uf (Ufw Um, We (P)) U,

assigning for it the equation of the relaxation type [2]:

Ws _ p(G.-0.), 0. =0

ge Vel §‘~§=0_ £
In order to preserve U 4 as a function on of U ¢ » We use as the relaxation value
U.=U,+U,,

which is permissible in Newton's model.We have the solution

P +w§(jm, W, = l—exp(— P§ ﬁj
Po

The situation appears thus: from the kinematic point of view, because of the interac-

— —

U.=0

tion with the medium, the velocity U > disappears and it is not exhibited in the

group velocity; from the energy point of view, it is transformed into the frequency
@ . This can be achieved because the role and functions of the dispersion and phase
requirements, are complementary.

2.2. Dynamics of the Doppler effect and aberrations in Maxwell's
electrodynamics

We will adopt the point of view that the change of the parameters of an elec-
tromagnetic field happens only because of its interaction with the medium or with
outer fields. Let us consider how these processes occur in the generalized electro-
magnetic model. Let us analyze the model problem:

The radiation with an initial frequency @, and wave vector K, from a radia-
tion source moving in vacuum with the velocity U 1« 1s spread to the Earth surface,
on which there is an observer.

The atmosphere is at rest, U » =0. It is required to calculate the manner in

which the frequency @ and wave vector K change because of the interaction of ra-
diation with the medium. Letw = w, .Using the equations obtained, we will unite in a

uniform system the dispersion and phase requirements [3]:
c2K? —wa? :FZ(gy—w)(w—K-U)z,

a)=a)0(1—wU§2/02)% +I§-U§,
r2=01-wtU2/c2)".

We assume that K, =0, K, =K, .We find the dependence of @, K on the initial

values of ®,, K, .We transform, accurate to (U % / 0)2 , the dispersion equation to the

form
AK?+BK_+P=0.
The coefficients are

11



2

A=1-a f, a=w+euw’ —w’,
c

=
c C

b,b=1+ecu—w,

2U2
wy Us
— 'fq,q=w2—2w3+w4+2€uw2—w3£y.
¢’ ¢

P=

We calculate a,b,q for gu=1.Analysis has shown that the solution can be ex-
pressed by the function

® = w|2-w)+ (1-w)" |
We have for K a nonlinear dependence on w

Kk o2 Ys
! c c
The aberration angle is defined by the expression

K. U,
tanag = -2 =—L @,
c

z

The connection of initial and intermediate frequencies is given by dependence

U2 % UZ
0= [l—w ﬁ} +p—L
= w, :

2
C (9

According to the calculations, far from the Earth surface we have
K =0,K=-2 w=0,.
c
As the Earth is approached, @ and K vary continuously because of the change in w.
For w=1 we obtain

w, U v\
K =—" fs,a):a){l— fs] :

Yoo ¢ c?

These values agree with Bradly's experiment and with the formula for the Doppler
cross effect. The same results are obtained by the methods of the special relativity
theory.

The special relativity theory, as is typical of a kinematic theory, connects initial and
final parameters of the field. It is possible to consider the special theory of relativity
as corresponding to «black box», given the input parameters, the values at the output
of the box are prescribed, but the process itself is not analyzed. The generalized
model indicates the laws of the dynamics of the processes. We have

e
O=0,+ O-——w Wy,
2 c

12



U./‘!Y ]

C

where o, = o,

2.3. New effects in the generalized Maxwell's electrodynamics
2.3.1. Unlimited velocities of an electromagnetic field in vacuum.

In vacuum we have p =0 and, consequently, w = 0. The field group velocity

K -
Vg :CE+UfS

depends on the velocity of the initial radiation source. The wave front surface repre-
sents a sphere, because a =b = ¢,¢ and its centre moves with the velocity

U.=U,.

* fs
This is the pattern in which the radiation propagates in the new model. It corresponds
to the idea suggested by Ritz [4]. Because of the interaction with the medium, in par-
ticular with the frame of reference, the velocity U » can vanish. Precisely this hap-

pens in all of the schemes for direct measurement of the speed of light in vacuum [5].
Therefore it is possible to consider that the generalized model of electromagnetic
phenomena agrees with the "constancy" of light speed in vacuum, demonstrating that
for finding the dependence, only indirect experiments are suitable, when measure-

ment without the influence on the quantity U > 18 possible.

If the radiation moves in a gravitational field, its influence on the inertia of the radia-
tion carrier is possible. This note can turn out to be important for the analysis of ra-
diation transfer in outer space.

2.3.2. Superlight velocities in a moving rarefied gas.

Let the radiation source be at rest with respect to the observer U 5 =0, and

the medium - gas stream moves with the velocity U .- Then the group velocity of the
field is

; :sL(l_izjwm.
nkK n

For index of refraction close to unity, the valuew = 0,5 will maximize the correction
term. The velocity will then be

+-U,

>

7 max 1
Vg = CO Z

In the special relativity theory we have different results. The group field velocity de-
pends on the Fresnel classical coefficient according the formula

14 =££+[1—L2 U,.
£ nkK n

13



Since n=1+0,, where O, =10+, we have

The discrepancy between the predictions of the generalized electromagnetic model
and of the algorithm based on the relativistic kinematics is clearly expressed. The re-
quirements indicated correspond to Fizeau experiment, if a moving rarefied gas is
used in an experimental setup. According to the dynamical model of the electromag-
netic field inertia, we can change the moving gas density so that bands in a Fizeau in-
terferometer will begin to move. Such an experiment can be carried out any time.

2.3.3. The possibility to move with light velocity in vacuum for physical objects
At w = 1, the analysis of the dynamics of the transverse Doppler effect for the

case of small relative velocities gives
@

o
A
CZ

Let us multiply this expression be the quantity h/ c’, where % is the Plank constant.

w =

Then we will obtain the dependence for masses which is used in the relativistic dy-
namics:

m,

- §
CZ

It will be shown below that the generalized theory of electromagnetic phenomena
gives another frequency formula when the velocities approach light speed in vacuum.
Maintaining the relationship between frequency and mass valid, we will offer a new
dependence of the mass on the velocity. For this purpose we maintain the above
model of the radiation propagation from empty space in to the Earth's atmosphere,

m =

assuming that the velocity U 5 tends to the light velocity in vacuum. The problem
can be easily solved entirely, but it is sufficient for our purposes to be restricted to a
version when the value w=1 is reached. Then U =0, ¢K_ = nw,. Since Uglcis

close to unity, the index of refraction corresponding to the actual situation is to be
taken. Let n =1+ Q, where O <<1.

With allowance for the above remark, we obtain the following system of equations
62

1
2
P
CZK)? :}/lz((g)2 _woz)’ w:wo{l_&] ’ +£Ufs(a)2 _0)3)%
C

The quadratic equation for the frequency

UZ % U2
0)2—2a)w00'[1— fs) +a)30'[1+ "[S‘I’J=O,

c? c?

Y =20+02,
n=1+0Q
now contains the factor

14



o=[-v2(+w)|", w=20+0".

The value of the field limited frequency is given by the law [3]

1
U2, A U2
W =w,0 (1——"3J ——‘f‘P%(l+‘P)%

2
C c

It has no singularity for U ; — ¢. We obtain

N
Uy = a)o (1 + Ej .

Assuming that the mass is proportional to the frequency, we have the new formula

N g
(1—Uj L enaew)s

o* =limw

c? c?

0 2
1_U

m=m
“—(1+v)

C2

The value of W should be found from experiment.

2.3.4. The mechanical law of energy conservation for a photon.

When radiation propagates in a rarefied gas from a primary source, mov-

ing in vacuum with the velocity U, , a dynamical change in its group velocity I7g

55
and frequency @ occurs. At small relative velocities the frequency at the final stage
of the dynamical process changes by the value

2
_5

w-w,=050, 5
c

Let us multiply this expression by the Plank constant # and use the Einstein formula
for the photon inertia mass:

@y
m, =h—-.
in C2
This will yield the relation
AU =E

kin >

where the following designations are introduced:
a) the kinetic energy of the photon, which depends on the primary radiation source
velocity

a’o .
Ekin = O’Shc_zU/%Y N

b) the potential energy of the photon, which depends on the frequency differences
AU =h (a) -, ) .

The situation appears thus: the photon had the velocity U > additional to the light
15



e

speed in vacuum c,, and the frequency @, ; in its interaction with the medium the
velocity U 5 was "transformed" to the frequency o .
Therefore the photon is similar to a physical body with its tangential L, and trans-

verse L. lengths in the Newtonian space-time and it has an interior motion.
Let L. =ak,and L, =bA, where a and b are constants.

Then the change of the frequency gives some changes in the L and L.

Conclusions

The generalization of Maxwell's electrodynamics, which takes into account all the
forms of inertial motion, is possible, which, first, does not use the special relativity
theory; second, it is based on the Newton space; third, gives superlight velocities and
indicates the conditions under which they can be discovered; fourth, describes the
known experimental facts, additionally assigning the dynamics of the external inertia
parameters for the electromagnetic field.

The Bradly, Michelson, Fizo, and Doppler effects have a dynamic nature.

The special relativity theory correctly relates initial and final magnitudes of dynami-
cal processes, fulfilling the function of a peculiar kind of a black box.

There is a dynamic mechanism of the transformation of the primary radiation source
velocity into the electromagnetic field frequency because of its interaction with the
medium, when the "mechanical" law of energy conservation is fulfilled.

The light speed in a moving rarefied gas can exceed the light speed in vacuum.

The velocity of an electromagnetic field in vacuum is not restricted to a limiting
value, but for it to be measured it is necessary to take into account the interaction be-
tween the experimental devices and the field or those conditions, in which the field is
spread.

The motion of particles for m, # 0 with the light speed in vacuum is possible.
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Part 3
Maxwell's electrodynamics
without the velocity restriction in spinor form

RESUME. It is shown, that Maxwell's electrodynamics without the velocity re-
striction has the spinor form for the matrix group V(4), which is
U )xSU(2))® (U (1)xSU (2)). In this model, Newton's space-time is used with the
Minkowski's space-time and with the Euclid's superlight space-time, which follow
from the dynamic equations and the connections between the fields and inductions.

Introduction

It is known that Maxwell's electrodynamics in vacuum has the spinor form [1-
4]. The present work shows this form for the electrodynamics of the moving media.
It shows that the electrodynamics model without SRT consists of the Newton's
space-time as the base of the fibre bundle manifold, with
V(4)=(U)xSU(2))® (U (1)x SU (2)) as the fibre, and the Minkowski's space-time
is used additionally to Euclid's super-light space-time.

3.1. Maxwell's electrodynamics in spinor form

Let us introduce

E_+iB, H_ +iD E_—iB, H —iD
E +iB_ H +iD E —-iB H —-iD
—| 7y v, — ¥ Y, =] v, @t = y v,
E_+iB, H_+iD, E_—iB, H_—iD,
0 0 0 0
1 . 1 U, U U.

ak :{6X,ay,az,(—l)zat}, ak :{ax’ay’éz l_at}’ Ut _{ c ’Ty’ c ’l}’
* u U U

c ¢ ¢
rk":rkn:diag(l, 1, 1,—1).
We will use

0 0 0 -1 0 0 -1 0 0 1 0 O

0O 0 1 0 0 0 0 -1 -1 0 0 O
al = ,612: ,a3= ’

0 -1 0 0 1 0 0 O 0 0 0 -1

1 0 0 O 01 0 O 0 01 O

1 0 0 O

01 00
a* = ,

0010

0 0 01
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The dynamic equations in spinor form can now be derived. The equations
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E —iB,

E —iB,

y Yy

E. -iB,
0

o o =

0
1
0

S = O O

0 0

o o O

1

We have analytically
ako, ¥V*+bko;,¥=0.

oS o O

+
Vv

S O = O
S O o =
S = O O

Let us introduce ® = column (ZpUx ,2pU ,2pU _, — 2ip)47z .

Then the equations

-1
VxH=—

c Ot

have the form
ak o, ¢" +b*0, p=D.

oD
—+4r

J

b

c

V-D=4np

ot

Let us write in spinor form the connections between the fields and inductions, pro-
posed earlier:

B+ w|Ex(iifc)|= u(d +|Dx(/c)),
D+ W[(ﬁ/c)x H]: 8(E +[(ﬁ/c)>< E])

We deduce

H_—iD,
H —iD

y y
H_—iD

S O O
S O = O
S = O O

S o = O

—_ o O O
S O = O

H_ +iD,
H +iD

y y
H_+iD.

-1 0
N, ,
0 c
0

0
U, 0
_l’_
c 1
0
0 0
0 0
0 -1
w0
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0 1 O 0 1 0 00 E —iB, 0 0 0 w
-1 0 0 O U, 110 1.0 0 E —-iB 0 0 1 0|U
+ ~+— (@) T +w x
0 0 0 —w|lc w001 0[’[E -iB, 0 -10 0]c
0O wt O 0 0 01 0 wl 0 0 0
0 0 -10 01 0 0 1000 E_+iB,
0 0 u, |-t 0 0 o0|U 1|0 1 0 0| .||E +iB
+ 4 z4— (i)Y >
1 0 0|c 0 0 w|lec w0010 E.+iB,
0O —wt O 0O —wt 0 0 0 01 0
If we introduce
G, =diag(1,1,1, w), R, =diag(l,1,1,—w), at=Q"atQ,

Hk e gann ,

Q_1 :diag(l, 1; 1: W)s ka :Q_1 kas a, =ak, bk :bk’ Uk :gank’

k
we can write

iupUr 9" —at U, (p)=kan(c~ku"‘P* +heU" ‘Pj

and
ie(bU, W —at U W)= wR, (@ Ung® + 54U ).

3.2. Analytic spinor form of the Maxwell's equations

If we use w=1, we obtained the standard Maxwell's electrodynamics, deduced
by Minkowski. Using our notations and

ni =diag(1,1,1,0), E, =diag(1,1,1,1), ¥=¥", @=¢'

we can write

g aaﬁﬂ(Eifn?f§)+ r“ﬁbaﬁﬂ(Eﬁn?f‘P)z 0,
reta,d,(E,ni@)+gb,d,(Enip)=0,

iy, b*UPE,n1 5~ g aUPE,nip)=g ,acUPE;ni ¥ +r,b«UP E,ni'¥,
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iglg,,bcUPE;ni¥ ~r,,acUPE,ni¥)=r,,a* UP E;ni +g,,b<USE, ni g,

i

F,, = 2ga7gﬂ§(a7H5‘P —b7H5‘P),

—1i

H,,= 2

gaygw(aVH‘?(p—bnyf(pT).

Here we have not only the Newton's space with n¥. The equations have the Min-
kowski's space with g% and the Euclid's space with 7.

3.3. Fundamental group for the physics

We will use the Pauli group ¥ (2)=U (1)x SU (2), where

1 0 0 1 0 —i 1 O
ol = , ol= , o2=| , o03= .
0 1 1 0 i 0 0 -1

Let us introduce ¥ (4)=V (2)®V (2) in form [5]:

1 0 0O 01 0O 0 1 0 O
01 0O 1 0 0O i 0 0 O 0 -1 0 O
0 010 0 0 01 0 0 0 —i 0 0 1 0
0 0 0 1 0 01 0 0 0 i O 0 0 0 -1
0 010 0 0 01 0 0 0 —i 0 0 1 0
o |0 0 0 1 0 010 0 0 ¢ O 0 0 0 -1
o, = ol = ol = o} =
1 0 0O 01 00 0 -i 0 O 1 0 0 O
01 00 1 0 0O i 0 0 O 0 -1 0 0

S o o =

0 —i 0 00 0 —i 0 0 0 -1 0 0 —-i 0
0 0 —i 00 —i 0 0 01 0 0 0 0 i
Glz = O'3=
i 00 ol *10i O O|* |0 1O O * |i 0 00
0 i 0 0 i 0 0 0 -1 0 0 0 0 —-i 0 0

0 01 0 0 0 —i 0 0 1 0 0 0
1 0 0 1 0 0 0 i 0 0 0 0 -1 0 0
O—l: = 0-3: .
o -1 0| *1loo o -11° 10 0 o | ° 0 0 -1 0
0 0 -1 0 0 -1 0 0 0 —-i 0 0 0 0 1
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The elements (al, a?, a3, E), (bl, b2, b3, F ) form the sub algebras with the condi-
tions £iEi —Eifi =clEk = [£i,&7]. The elements (c',c?,c3, E), (e',e2, e, E),
( fy e 3L E ) are the sub algebras with the conditions
EiEi+Eigi =clér = {§f, .f/} Let us introduce o =—1 for the elements E, a‘’, b’

and o =1 for the elements c’, e', fi. For any elements from 7(4) we have the
conditions

§187 400 0we s =cigh
SIS+ 000 os e s = el e,
éiéjfkfl =+ O-(I)O-(l)O-(k)o-(l)o-(m)glgkfjgl — czklgm o

which determinate a new algebra. The designation (i) means the absence of the sum-
mation on the coinciding indexes. We understand now, that Maxwell's electrodynam-
ics without SRT has the Newton's space-time as the base of the fibre bundle manifold
and V(4) as the fibre [6]. We can give a simple "picture" of the group V(4). Really,

the elements of the subgroups have its own places, according figurel:

Fig.1. The picture of the group V (4).
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Conclusions

We have shown, that Maxwell's electrodynamics without the velocity restriction has
a simple spinor form for the group V(4). We see, that in this form, the Minkowski's

space-time and the Euclid's space-time are used additionally to the Newton's space-
time.
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Part 4
Physical mechanism of the dynamical transformation
of the field inertia for Maxwell's electrodynamics
without the velocity restriction

RESUME. This work suggests a physical mechanism of the dynamical trans-
formation of the field inertia for Maxwell's electrodynamics without the velocity re-
striction. It is found, that two scalar cohomological groups govern the field inertia.

Introduction

Part 1 and Part 2 of this series suggests a new model of the field inertia, com-
prising two different parts: proper inertia, which depends on the index of the refrac-
tion n(p), and external inertia, which depends on the new magnitude w(p), named
the «phase inertia». In this model, the velocity and the frequency of the field dy-
namically depend on n(p) and w(p). Earlier, only simple solutions for the proposed

model were derived. Now some new exact solutions, based on a generalized Green's
function, will be derived. We will study the physical mechanism of the change of the
proper and external field inertia.

4.1. Generalized Green's function

Following from the new model, we have the Green's function for the vector
equation

2
[A—ia—zj—g“_w ! [ﬁm-vj A=0,
c? Ot? 2 (1-wp2)\ o
in the form [1]

= 2 /§_M2 2%_
G,(7,t) = 1674 u(r? + £2) [z e Wﬂ)@(r +§)]

Here i = (1-w)i s Twi,, u, is the matter velocity, u . is the first source velocity,

- — — — 2
B=if e=z-HN _ o U= Wh?)

In a cylindrical coordinate system, the position vector has length

1

R=(p2 +ZZ)5.

We will analyze some exact solutions transforming the Green's function. In accor-
dance with standard method [2], we have the relation for the ¢ -function
4 (t )

where
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1

AP
L eu=prwr | u(l-ppr) ( eu-—w o df
o= c(l—wﬂzw{p e Eﬂﬂzwzm]} 0%

We will introduce
:(6,u—ﬂ2w2)c—1 po_ EH—W
(-wp)eu = ep-prw
The roots ¢ are
L= (s = w)Bz £ Jeu( = wp)lz2 + p2(1— guB?) /(1 - wp)]
127 1—sup? '

The derivates | f '(ts )| are equal. So we have

t

|f' |—|f |— 22+b(l az))y
With the function
a 1, a>0,
we have
0.5(1+sgnt1)5(t—t )+0 5(1+sgnt )(5(t—t2))

2 + (-2 p2) (1= w2 )| 2]

We can analyze now some particular situations for different phase veloci-

G,(F,t)=167*u

) . -
tiesv, = ;s , where o is the frequency, & is the wave vector.

l.Forv, < c/\/;, we have

loenp? pzj%.

G, (7, t):167z4,u5(t—t1)(22 " i

2.Forv, = c/\/a, we have

[ 2

! 2c Eu

and

G, (7

t):16ﬂ4’u5(t—tl).
z

>

3.Forv, >c/\/a, we have

, N\
G, (7, t):167r4ﬂ[5(l—f1)+5(t_t2)](22 +%p2j .

Two roots ¢, and ¢, are positive. The surface of the wave front is a cone with the an-
gle

P
[ 1-wp?
tg@g_[sﬂﬂz—I] ’
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which has nonlinear dependence on w.

4.2. Geometrical optics approximation

Consider the situation in which the phase inertia w changes slowly. For small veloci-
ties, when f2 <<1, we have

B=uH+[GxE], D=¢E-[GxH],
where G = —(ue - W)B.
The light ray is describing by the dispersion equation [3]

(k-G): =n?,
where k =V w . The Hamiltonian is
H=05|&-Gf -n2|

From the Hamilton-Jacoby equations we see, that the vector dr/ds depends on
kand G. G is nonlinear function of w(p).

4.3. Cohomological mechanism of the field inertia

We will determine the proper field inertia for the case when u, =u , =0. Then the

group velocity is
. ck
VvV, o=——
£ nk
and the rate of the refraction n governs the field inertia. We will determine the ex-
ternal field inertia for the case when u, #0, u, #0. Then the group velocity has

the form
. ck S
v, :%;+(1—%J[(l—w)ufs +wum].

We will discuss the physical and mathematical meanings of the magnitudes n and
w, using the general form of the connection between fields and inductions. Max-

well's generalized equations are 0, F,,, =0, 0, H" =S', H* =Q"Q"F,  with

Qi =L QY +[8—'u— juiu] ,
7%

Qi =diag (1,1,1,w), ui=dx'/d®.

If the velocity is i, =i, =0, then u’ = diag (0,0, 0, v/w) and

§(200)0|ﬁ:0 :L{er(g—'u—ljw} = 8\/_,

w
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0
We have Q¥ =diag (1, L1, g,u)L. We introduce now two magnitudes:

T
(0) ©)
a) o =detQ¥/ detQ? ;

b) w=det®¥ /det®?

© )
where Q7 = diag(1,1,1,1)=07 .

So we have in Maxwell's electrodynamics two scalar functions, which form
two scalar co-homological groups H 0(G, A) [4]. Really, for any group g e G and

any scalar elements a € o, w we receive the condition ga=a and a € H°(G, 4).

This means that the dynamic of the electromagnetic field inertia are governed by two
co-homological groups HO(G, A): ac€oc,aecw.

Conclusions

Now we understand that the dynamic change of the electromagnetic field in-
ertia is based on two 0-cohomological groups: one of them governs the proper field’s
inertia and the other governs the external field’s inertia.
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Part 5
ACTIVE SYMMETRIES AND ISOMETRIES
OF THE MAXWELL’S ELECTRODYNAMICS

RESUME. It is shown, that Maxwell's electrodynamics without the velocity
restriction has for the rest and moving media an isometry group which is the Lorentz
group with generators and parameters depending on its 0-cohomologies, governing
the dynamics of the frequency and the velocity of an electromagnetic field in Newto-
nian space-time.

Introduction

In the first and second parts of this series the generalized connections between
fields and inductions in Maxwell's electrodynamics for moving media are proposed.
They have allowed agreeing experimental dates with the solutions of the equations
within the framework of Newtonian space-time, without use of the special relativity
theory. In this article the local isometric symmetries for offered combined equations
are studied. It is shown, that they depend on 0-cohomologies in such a manner that
the dynamical changes of the frequency and the field velocity are in concordance
with the Galilee and the Lorentz group, which are physically supplement. They oper-
ate in tangential space with the local metric, associated with the connections between
fields and inductions both in the rest and the moving media. Newton's space at such
approach is the base of the fibre bundle manifolds, which remains invariable, if the
isometry group is acting in the fibre.

5.1. Active symmetries of Maxwell equations

It is known, that the Maxwell's tensor equations - a[kan] =0, 0,H* =§7

are invariant for the 20-parameter Lie algebra of the group IGL(4, R), containing the
Poincare sub algebra 4P(1,3) and the Galilei sub algebra AG(1,3) [1]. The simple
proof of this fact we can find in the Post's book [2]. It is obvious enough, because the
Maxwell's equations represent linear expressions for tensors, which are derivate from
tensors of the second rank F , H* and the covector derivatives. Schouten has
shown [3], that viewed system has general covariant if covariant, derivatives take the
place of partial derivatives. Moreover it is only one, if there are no other fields. The
tensor connection for fields and inductions in form H#* = y#mF  has the general
covariance symmetry by virtue of the tensor definition. It is clear, that an invariance
of the equations is not enough for the physical analysis, if the group is so large. The
situation varies, when the requirement, that the symmetry is an isometry, is added.
Then the coordinates and time transformations are considering, for which the sym-
metric tensor g, viewed as the metric of tangential space with the interval

ds* = g dx'dx/ is invariable. In this case the interval has the same form in different

coordinate frames. From the topological point of view the isometry requirement
means, that the 0-cohomologies of the metric are identical. We have the expres-
sionsa =det(£), b=sp (&), where (£) is the metric tensor of the tangential space,
given in the matrix form. As we are interested in solution for concrete conditions it is
naturally to select these solutions from the analysis of the connections between fields
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and inductions for the electromagnetic field. We will study isometries for the rest and
the moving media.

5.2. Isometries in the rest media
(0) (0)

Let D =¢E, B=puH . The connection H i = Qim Qfn F,  gives the tensor

)
Qim = Ldiag (L1,1, ).

Ti

We will find the isometry group for the condition

(0) (0)
Qi,j. dxi'dx/ = Qy dxidxi,

when Qij is identical in hatched and not hatched coordinate frames. Let us note, that
¢, p depend on Newton's space coordinates and €2, too. But for tangential space

this dependence is parametrical, because we study the connection between dx#' and
dx# . It is easy to see, that coordinate transformations

de=— BTV gy dr=de, df=

o] o)
c? c?

are isometries (at v = const ) because
dx'? +a’y'2+dz'2—iczdt'2 =dx? +dy? +dz? —chdt2 .

&l gL
We note, that at i =1 we receive the Lorentz transformations. For any other values
(&u #1) there are other values of "maximum velocities", equal ¢*=c/n. By direct
substitution, following [4], easily to prove that Maxwell's equations maintain its form
at the transformations with gu = const . Then the connections D=¢E, B= uH are

transformed to D'= ¢ E', B'= u H' in accordance with the rules:
E' =FE , F =7/(E_—KB ], E' =7(E +ZB),
x X y y c z z z c y

B =B ,B'y:y[B +YeuE J B :7(3 Y euE J
X x y c z z z c y

D' =D_, D, :y/[Dy +Kngzj, D' :y(Dz —Kngyj,
C C
\% \%
H =H , H, :;/[Hy +—Dzj, H' =7(HZ ——Dyj,
C

c
v2 %
y=1-au—| ",
cz
which confirm our conclusion. In this approach the isometry group operates in tan-
(0)
gential space with the metric Q, associated with the connections between fields
and inductions. We have therefore the space of events SE. It is locally Riemannian
space. The Newton's space, in which one we are describing the electromagnetic phe-
nomena, is self-dependent and forms the space of state SS. So, we will adopt the
29



point of view, that Maxwell's electrodynamics is based on two spaces, which are in-
dependent. As it is enough to have such model for the explanation of the experimen-
tal facts, we understand, that the pair of spaces (SE and SS) indicated there is enough
too. However it is only physical conclusion, but its mathematical essence remains
vague. Also the equations are invariant

D+gy[BxH]=8(E+[BXED,
B+ulEx =i +|Dx ).
p=iijc.

There are no inconsistencies with the previous deduction, because, as it is easy to see,
the "convective" terms of the connections are canceling each other.

5.3. Isometries in the moving media

At the beginning of this series it is shown, that the connections D=¢E,
B=puH can be extended for the case when the medium has the velocity u, and a

primary source has the velocity u,. For this purpose we use the velocity

I
i =(1- w)zZﬁ +wiiand also the tensor g7 = diag (1, 1,1, w). We deduced the tensor

Qii:L gii+[8—'u—1juiuj s
=

connecting the fields and inductions in the moving media.
Let us show, that the similar expressions follow from the assumption, that the
tensor g, depending from w, is isomeric in the tangential space of events SE. We

will receive for the metric g, the isometry (similarly to the isometries in the rest

media) in the form:

dx —vdt dt—w%dx
de=—PTVE gy, di=dz, di'= c

Now it is easy to find the fields and inductions transformations concerning this iso-
metry. The connections, which are invariant for the isometry transformation, receive
the next form:

D+w|BxH|=e(E+|xB)),

B+w|Exf|=u(d+|Dxg).

Earlier we deduced that these connections correspond to model of the dynamical de-
scription of the relativistic effects in Maxwell's electrodynamics without special rela-
tivity theory. In this approach the isometry can be used not only for the kinematic
explanation of the class of the equivalent solution, as it is accepted in special relativ-
ity theory, but for a deduction of the equations, connecting fields and inductions.

Such approach has been offered initially by Minkowski [5]. Let us express B and D
through E and H . Then
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B o) i () (B ) p (- A
D= de(-wp?)E+(eu—w)|(GxH)-e5(5-A).

l-sup?
From the obtained relations follows, that at w=gu we receive the isometries for the

rest media and the equations D=¢E and B = u H . The isometries, depending on
w, if to distract from the method by which one they are obtained, represent the
symmetry class, which is parametrically dependent from w. But, as it was indicated
earlier, the quantities

a=det(g7), b=sp(g),

give the 0-cohomologies, introduced by Hochschild [6]. They do not vary at the iso-
metry transformations because of the invariance of the metric tensor. It is known,
that the cohomologies characterize the topological properties of the phenomena. In
this case they are expressed by w(x). At w=0 we have Galilee’s symmetry. At

w=1 we receive the canonical Lorentz's group. In general case we use expression

w=1-exp [— P, p/ po], where P, - relaxation constant, p, p, - densities of the

media. Therefore the change of the quantity o gives the change of the local isometry
corresponding w. In the dynamic process for the electromagnetic fields the fre-
quency change and the velocity change are governing by the Galilee’s and Lorentz's
groups. The isometry bears no relation to the structure of Newtonian space, in which
one the phenomena are considered. Therefore it is possible to construct the fibre
bundle manifold with the pair of the spaces SE and SS [7]. Our situation is standard
for such approach. It is clear, that we can use the Newtonian's space as the base of
this manifold and the isometry group as its fibre. So we receive the models widely
used in the differential geometry.

5.4. 0-cohomologicaly dependent active Lorentz transformations

Let us show the algorithm, following to which one, we can receive general-
ized transformations, depending onw, using the canonical Lorentz transformations.
In the first place we will use the Lorentz transformations in the infinitesimal form
g=1+4 w-,
where A are the generators of the symmetry, < are the parameters of the symme-
try.

Let us associate with the Lorentz symmetry the 0-cohomology group, consisted of
the scalar functions w(x). Analogical functions can be introduced into the physical
theory by different ways. The magnitudes w(x) in the interval (0+1] form the multi-
plicative Abelian group. It is obviously, that the representation of this group is
Q' =diag(1,1,1,w). Now we will modificate the canonical Lorentz transforma-
tions. Let

A =040, ijc= (l—w)u_;‘_,Y Je+wu, e

Here we have, apparently, the class of the algebraically equivalent generators of the

symmetry and the class homotopically equivalent parameters of the symmetry. So we
receive 0-cohomologicaly dependent transformations

g=1+ ZSaN)S .
Using this method, we deduce the generalized generators of the Lorentz group in the
form
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1 0 0 0{|O O O —Ifj1 0 O O 0 0 0 —wt
7 - 01 0 0}|O OO Ofj0O1 0 O _ 0 0O 0
100 1 0|0 OO O0[[0 01 0 0 0O 0
0 0 0 wi|1 00 0|00 0 w w 0 0 0

They give the isometry group for the moving media, which was described above. It
depends on the 0-cohomologies and consequently it is necessary to consider it as the
0-cohomologicaly dependent Lorentz transformations. Using the change of w we at-
tempt to take into account the topological aspects the electromagnetic field. For this
reason we can interpreted the dynamic change of the frequency and the velocity of
the field as the change of its topological aspects.

Conclusions

The 0-cohomologicaly dependent transformations of the coordinates, which
are expressed by the isometries in the rest and moving media, permit to describe the
dynamic states of the electromagnetic field interacting with medium. The symmetry
of the vacuum equations is given by canonical Lorentz transformations and it is the
isometry group. Using 0-cohomologies and proposed algorithm of the symmetry
modification, it is possible to find all class of the isometries and the equations for the
moving media.
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Part 6
The dynamical influence of the classical
experimental equipment at the electromagnetic field

RESUME. The dynamical influence of the classical experimental equipment
at the electromagnetic field is described by the class of the Lorentz's transformations
dependent on 0-cohomology group w(x). They act in the space of events SE, which is

additional to the Newton's space.
Introduction

In part 1 and part 2 of this series we have shown, that Maxwell's electrody-
namics with the generalized connections between the fields and inductions gives the
dynamical description of the relativistic experiments in Newton's space-time without
using the special relativity theory. This possibility is based mathematically on the
dynamics of the 0-coho-mology group with the elements w(x), which govern the be-

havior of the field's parameter. This possibility is based physically on proposed new
property of the electromagnetic field: at the dynamical change of its external inertia.
Part V of this series suggests an isomerty group for the moving media in the form of
the Lorentz's transformations dependent on the 0-cohomology group, which acts in
the space of the events SE. This dependence allows giving the dynamical explanation
of the relativistic experiments, using the space-time transformations, concerning the
structure of the space of the events SE. So we receive the generalized kinematic
method, which we can use additionally to standard physical description. Really, it is
known, that the symmetry of the equations, describing the physical events, gives the
class of the model solutions. It is useful, for this reason, to consider the class of pa-
rametrical symmetries, if we want to compare the different experimental results.

We can use this method in the real practice. We will suppose at first, that the experi-
mental equipment is the real medium (with the special concrete construction) and,
secondly, that the measuring is the interaction of the experimental equipment with
the electromagnetic field. We will describe the experimental equipment by means of
the rate of the refraction 7,(x) and the velocity i ,» which is analogous to the me-

dium velocity #, . We will use the phase inertia w, (x), which describes the dynami-

cal change of the external field's inertia. This method allows us to give two ways for
the description of the interaction of the experimental equipment with the electromag-
netic field. First way includes the solution of the Maxwell's electrodynamics with the
generalized connections between the fields and inductions with the parameters
n,(x), u,(x), w,(x). Second way includes the generalized space-time transforma-

tions with the parameters w,, u,. They act in the space of the events SE, which is
associated with the connections between the fields and inductions.

6.1. Lorentz's transformations dependent on the 0-cohomology
group

We will modificate the infinitesimal Lorentz's transformations
g=1+A4w,
using the 0-cohomology group G with the elements w(x), which is related with the
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rate of the refraction n(x) by the equation [1]:

w= l—exp[—PO(n—l)].

We will use the magnitude

O =diag(1,1,1, w)

as the representation of the 0-cohomology group G. We will transform the generators
A_, using the rule

4, =0140.
For example, we will receive

1 00 0Y(0 O -1

0 100 0 0 0 0 -wl
~ (01 0 0ff0 00 0f01 0O 0| 000 O©
‘1o 01 0//0 00 0[[0OO0T1 0] |0 OO0 O

000 w/ll 00 0JlO0O0 wi) |lwoOoO 0

Let the parameters of the Lorentz's group @+ are invariable. We will derive the gen-
eralized space-time transformations, according the equations

dxu'= (I + ZS cos):l dxv.
Let us introduce w* = ® . We have deduced, that
dx"'=dx' -w1Odx?, dx°'=dx’+wOdx', dx?'=dx?, dx3'=dx3.
These transformations for ® >> ¢ have the form
dx""'=dx'cos® —icdtw'sin®, dx?'=dx?,

dt'= dt cos® — L dxwsin @ , dx®'= dx?,
C

where

x'=x,x2=y,x3=z,x%=ict.

Let us introduce the coordinate system with the velocity v, which corresponds to the
condition dx!''=0:

v
1g0 =—iw—.
c
We receive
-1 1

V2 % . % V2 %
cos®=|1-w?2— ,Sin®@=+i—w|l1—-w?2—

c? c c?
and the space-time transformations

dt —w?—d
dx —vdt W c? X

dX'=————— d'=dy,d'=dz, dt'=—————.
o) o)
c? c?

For w=0 we have the Galilee’s group, for w=1 we have the canonical Lorentz's group.
In general case these transformations describe the action of the Lorentz's group, de-
pendent on 0-cohomology group w(x), in the tangential space. When the magnitude

w(x) changes, then the space-time transformations give the dynamical change of the
magnitudes {dx*'}, if we considerdx* = const. This approach is different from the

method of the special relativity theory, when dx* =const corresponds to
dx*'= const . Now we have some new possibilities.
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6.2. Approximation to the real situation

In real situation we have at least two experimental equipments and each of them
has an influence at the electromagnetic field. We will take into account these influ-
ences using the 0-cohomology groupw, (x) and w, (x) in accordance with the Lor-

entz's group dependent on 0-cohomology group. For this aim we will use two repre-
sentations Q! = diag (l, L1, W1) and Q;' =diag (1, L1, wz). We will transform the
Lorentz's generators using the rule

4,=010,'4,0,0,.

Following the definition

g=1+ Zsa)s ,

we will receive the transformations [1]

dy'= X vt df'= < ay=dy, d'=d=.

IV 1

RV RV
l-w2w?2 — l-w2w? —
c? c?

The metric tensor
gi =diag (1, L1, wi, Wf)

is isometric for its action. The magnitude gif describes the generalized space of the
events SE. Now we can analyze many different situations in an unified manner. The
magnitude w?w? governs the group. We have the Galilee’s group, if w, =0 or
w, = 0. These situations realize at the initial stage of the real measurements, when
the experimental equipment has no influence on the electromagnetic field corre-
spondingw, = 0. We have the Lorentz's group, if w, =1 and w, =1. These situations
realized at the final stage of the real measurements, when the influence of the ex-
perimental equipment on the electromagnetic field gives final magnitudes of the dy-
namical changes, corresponding w, = 1. We note, that the proposed method takes into
account the different dispositions (places) of the experimental equipments, because
We can use w, (x7(4)) and w, (xi(B)) where 4 and B are different coordinates. It is
important for real experimental situation. In general case we must use the operator
A7 in form [2]

s, o, = A |

This operator may be very complicated, following the real situation. It is clear, that
this generalized kinematic method can be used additionally to the dynamical descrip-
tion of the electromagnetic processes.

t,A4,w

6.3. New operation and nonassociativity

We derived some space-time transformations with different magnitudesw;, .
We will introduce a new operation for the generalized Lorentz's transformations. Let
g, *g, =xif)g, - =lij)g,
Here the operation 7 (ij ) gives
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w(z]) = O.S(Wi2 + wjz)
and replaces w, and w, by w(ij) for the elements g, and g,. Then we use the ma-
trix multiplication. We will deduce for the velocitiesv,, v, that
v, v,
v,
H V.V,

1+ L w(if)

cz

This law gives the nonassociativity [2], because

vivjvk ..

V. +v. +vVv +7W(l])
i Jj k 2
) C

Vijk AT w(ij, k) )
I+— wlij) + 2 vi(v"+v'/)

vy, i, ik '
1+ 2’ W(]k)+7w(l 2] )vi(vj +vk)

The associativity corresponds to the situation, when w, =w, =w, =... It is easy to

derive the general condition for the elements (k, g, /):

(h*g)sg)k =k=(g*(g=h)).
We have a new loop [3], for which

(hxk)xg=(h*g)x(kxg),
g*(hxk)=(g*h)*(g*k),
(gxh)x(gxk)= (g xn)xk)xg+((hrk)xg)xg+((kxg)rg)*h.

These laws illustrate the complexity of real situations, which take place in the
electrodynamics with active cohomologies, when w(x)# const . The special relativ-

ity theory corresponds to the particular case, when w, =w, =w, =1.

6.4. Practical aspects

1. Inpart 1 of this series is derived the formula for the group velocity of the
electromagnetic field

. ¢k w _ _

v :——+(1——j[(1—w)u +wu ]
¢ nkK n? £ "

Here u,, is the matter velocity, u , is the primary source velocity, 7 is the rate of the

refraction, w is the phase of the external field inertia. For w = 0 we have the formula

- K
vV, =c—+u,,
g K s
showing the dependence of the group velocity v, in vacuum from the primary source
velocity u . But w=0 for the experimental equipment corresponds to the situation

without the interaction with the electromagnetic field. We must use for this case only
indirect measurements.
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2. In Fizo interferometer u , =0 and we can use the gas, as the medium with the
velocity #, . So we have the formula

We can receive the velocity ‘vg‘ > ¢, changing the velocity #, and the magnitude w.

3. Earlier we received, that the frequency of the light w, has the form

1
"2 » 2
(1—@ L1 4wy
C

c
0 =,

2 b
Uy

(1+%¥)

1—

s
2

where ¥ =20+ Q?, n=1+ Q. This law has the dependence on w and n. These re-
sults help us to make new assumptions on the behavior of the light.

Conclusions

We have shown that 0-cohomologies w(x) can play the main role in the ex-
perimental investigations of the dynamic of the electromagnetic field. The Lorentz's
transformations dependent on the 0-cohomology group w(x) give the analytical form
of the dynamical influence of the experimental devices at the electromagnetic field.
By this way we receive some new physical effects.
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Part 7
NEW WAYS
FOR THE ELECTRODYNAMICS MODELS

RESUME. It is shown, that classical electrodynamics in the spinor form has
some new points for the development: non-euclidean structure of the three-
dimensional space for the potential A, the possibility to use the symmetrical wave

function, the classification of the topological deformations for the space of the
events.

Introduction
The present work shows the new possibilities for the development of the clas-
sical electrodynamics, which are based at its spinor form and the active O-

cohomologies for the connections between the fields and inductions. The topological
sense of the metrics &%, which are used for the space of the events SE, is studied.

7.1. Non-euclidean three-dimensional space

Part 3 of this series shows the spinor form of the Maxwell's electrodynamics
if we will introduce

E_+iB, H_+iD, E_—iB, H_—iD,
E +iB, H_ +iD _ |E -iB| _ |H -iD
| 7 Y, o= y Y, Y=| Y, p= y v
E. +iB, H_+iD, E. —iB, H. —iD,
0 0 0 0

We will find the algebraically form of this expressions using the standard connection
between the fields (E , E) and the four-potentials 4, . Let [1]
0A O0A, 04

X + b4 + z +la¢

T -0,
ox Oy 0Oz «c Ot

W =F +iB =———2x 2P ;00
c 0t Ox 0y oz
04 0A 04
¥, =E +iB =—l—y—8—¢+i * g ,
7 c 0t Oy Oz ox
04 04 04
¥, =E_+iB __ 194, %9 0% ,
: ¢ 0t 0Oz ox oy
= 04 04 0A
¥ - - —-104 00 ;04 0%
! * c 0t 0Ox Oy 0z
— 04 04 0 A
¥, =E —ti:—l—y—a—(o—l —+i——,
d ’ ¢c 0t Oy 0z ox
— 04 04 04
¥ -£ -ip —-10% 00 ;0% 04

We receive for (0. = d/éct):
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-0, —i0, i@y —1i0 A, ¥,
i0 -0 —i0. —i0 A Y

T X y ¥ — 2
—z@y i0 -0, -0, | A, ¥, ’
i0, i0 i0, -0, \-igp 0
-0, i0 —ié’y —1i0 A, ?1
—-i0_, -0, 0, —ié’y Ay _ Wz
i@y —-i0, -0, —Ii0, A, ?3 )
i0 i0 i0 -0, \-igp 0

x v :
We have, using (ai, b ) € V(4) (according part 3), that
[0, +ib20, —ib30, )+iEd, |[4]=[¥],
[(~iat0, —ia26, +ia%0,)-iEd, |[4] =[],
where T = —ict, 8, = 8/d(~ict).
We can introduce three non-euclidean metrics, which algebraically act at the four-
potential 4, :
ki =diag(l,-1,1,-1)=c, eV (4),
ei =diag(l,-1,-1,1)=c, e V(4),
mi = diag (1,1,—1,-1)=c, e V(4).
The matrices (ci, E) form the sub algebra of the 7(4) algebra with the conditions
ce,tee, = a§ck = {cl., cj}.
We have also the metrics Vop s 8ap s Mop

g, =diag(l,1,1,1)=E,
r, =diag(1,1,1,-1)=05(E-c, +c, +c,),
n,, = O.S(gaﬂ + raﬂ): diag (1, 1,1, 0).

We use this metrics in the spinor form of the Maxwell's electrodynamics.
We will deduce these and other metrics using

<9y

We will receive using the tensor multiplication

1 0 00 0 00O
0 0 0O 01 0O
II=X®X = , IL,=X®Y= )
0 00O 0 0 0O
0 00O 0 00O
0 0 0O 0 00O
0 0 0O 0 00O
I, =Y®X = , II,=Y®Y= .
0 010 0 00O
0 00O 0 0 01
So we have idempotential elements:
I12 =11, .

1

It's easy to see, that
E=g7 =XQ@X+X®Y+Y®X+Y®Y,
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C=X®X+Y®X-XQ®Y-YQ®Y
=XQX+Y®Y-X®Y-Y®X},
B=X®X+X®Y-Y®X-YQ®Y

rf = XQX+X®YV+Y®X-YQ®Y,

n? =05(g” +r”")=XQX+X®Y+YQ®X.

We have now many metrics in Maxwell's electrodynamics with non-euclidean three
dimensional spaces.

7.2. Symmetrical wave function in the electrodynamics

At the quantum level the electromagnetic field describes the quasiparticles -
photons - as the particles with the spin 1. We must describe such particles, following
the Pauli principle [2], by antisymmetrical wave function. The tensors (an, H ik)
play this role (see part 1, part 3 of this article). We will deduce the description of the
electromagnetic field in the spinor form by the symmetrical wave function, using the
subgroups (e’, f7)e V(4) and some additional elements. Let us use the spinor's base

1 0 0 0
n= . =t =% n ="

ol ol ol flol
0 0 0 1

We will construct
Y =E +iB_, ‘I’y :Ey +iBy, Y. =E +iB, ¥, =0,

if we know the vectors (E , E) in the Newton's space R3 xT'!. We have now two con-

structions:
0 P e 0o v, ¥ VY
-¥Y. 0 Y, - Y. 0 ¥ Y
R e B T 7 R R 2 I 7
P N 0 E L
where (a*,e*)eV(4). @, is the antisymmetrical function, @, is the symmetrical

function. The spinor wave function
VY = column (‘I’x, ‘I’y, ¥, 0)

can be received by some ways:

1 .
a) V= Zraﬂba (ak‘I’k )Hﬂ ;

1
b) ¥ :Zgaﬁea (e"‘I’k)Hﬁ. .

We have ¥ = é{rﬂﬁba (a’f v, )H s+ 8&%e, (ek v, )H ﬂ} . Consequently, the symmet-

rical wave function is possible in the Maxwell's electrodynamics, if we use its spinor
form. The permutation of the components ¥, gives new matrixes:
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000 1)O0 ¥ 1 0 0 0)Y,) (¥,
00 1 0f¥.| |V, 000 1|0 |¥
01 0 0%, | [Y.]" [00 1 0¥, | |V [
1 00 0)(¥, 0 010 0¥, 0
0 1 0 0)Y¥,) (¥, 00 1 0)VY.) (Y,
100 oY | |Y 0 1.0 0¥, | |V,
000 1[0 Yo" |1 00 0|y | |V
001 0)\¥ 0 000 1)L0 0

z

The analysis, proposed in [1], introduces the matrixes
_J(a 0)(0 a)(b 0)(0 b
P70 b6 oflo afla o) [

which are combined from the matrixes a and b. We can consider p, as the result of
the new operation * : p, =a*b. So we receive the coalgebra W(4) [3]. If we use
O=a, b=0%*Q, we will deduce the coassociative rule

OQ*(Q*D)=(Q*OD)*0,

because

eeo-{ 3o o)lo o) o)}
eore-{( 2o o} )G O

Obviously, we have the commutativity:

m @ @ «
G*G=G*G.

For this reason we understand, that the spinor ¥ can be combined from the symmet-
rical wave function @, using the algebra V(4) or else coalgebra W(4).
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7.3. Four 0-cohomology dependent metrics in physical theories
The algebra V(4) has two functions

Y, =Det(AI—A4), Y,=Sp(Al-A).

The elements (a’, b) formed the communicative sector with ¥, (a, b):(l 2—1)2. In

the anticommutative sector for (c, e, f7) we receive Y, (c, e, f) :(/1 ’+ 1)2. We will
present these formulas by the fig.2.

5,00
4,00 — |
3,00 —

2,00 —

1.00 — Fig.2. The 0-cogomology
’ curves of the algebra V(4).

0,00 ~ ‘ |
2,00 -1,00 0,00 1,00 2,00

We can introduce 0-cohomologicaly dependent canonical metrics for the space of the
events SE in the form

EV == diag(l, 11, /1~1):> (rij, n’, g”),

where A is the root of the function ¥,. We have used these metrics in the Maxwell's

electrodynamics with active 0-cohomology (see part I, II, III of this article). We will
study the possibilities of the metrics &7 changing. We will introduce

Y= 0(}71 + ﬂfz
with (a, 8 ) as the arbitrary functions. Let us introduce

)71 :Det‘ﬂj—z

. ¥ =Sp‘/UN—Z‘.

Here A is the matrix in which the canonical elements, equal (£1), are replaced by
arbitrary magnitudes (a, b, ¢, d). For example, we have the transformation:
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01 00 0 a 0 O

1 0 0 O ~ |b 0 0 0
A= = A= ,

0 0 0 1 0 0 0 c

0 01 0 0 0 40

1 0 0 O a 0 0 O

01 00 ~ 0 a, 0 O
I= =1 =

0 01 0 0 0 a O

0 0 0 1 0 0 0 a

N

Thus we introduce 10-parametrical space of the 0-topological deformations with the
magnitudes

(a: b5 ¢;d; a3 a,; 055 a,; 3 B).

The function Y has the form
V(A)=2+0,22 +0,A+0,.

The Milnor space [3] with the coordinates (02 , O, 00) is only the three dimensional

surface in the ten dimensional deformation space. The analysis of the topological de-
formations is known [3]. We receive all 0-cohomological dependent metrics g¥ (SE )

The left side of each picture shows the "stability" (in the sense of the stationary
phase) of the 7% metrics (Euclidean's type), the right side of each picture shows the
"stability" of the g% metrics (Minkowski's type). We have the system of bound states

[4]. It is useful, to consider the function Y as the analogy of the Higg's potential [5],
supposing

V((p): ap*+bp? +c.

We understand that the "stability" of the metrics &7 is the reaction of the electro-

magnetic field at the topological deformations for the space of the events SE. Conse-

quently, in the classical electrodynamics there is the mechanism of the O-

cohomology dependent deformation of the field parameters, which has the analogy
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with the spontaneous symmetry breaking in quantum electrodynamics. This mecha-
nism is based on the space of the events with the system of the metrics & (SE ) The

metrics £¥ are realized in the 10-parametrical space.

Atype B-type

AN

Fig.3. 0-cogomological dependent metrics &7

Conclusions

We have found new points for the development of the classical electrodynam-
ics: non-euclidean structure of the three dimensional space for the potentials 4, ; the

possibility to use the symmetrical wave function; the classification of the topological
deformations for the space of the events.
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CONCLUSIONS

Now we have dynamical model of the relativistic effects in electrodynam-
ics. We understand that the physics of the light phenomena is based on the ac-
tive 0-cohomologies. We are received the model without the velocity restriction
and singularities. In this situation we can do new theoretical and practical steps
forward to the investigation of the light particles structure.
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